Thermochemical CO2 Reduction to Methanol over Metal-Based Single-Atom Catalysts (SACs): Outlook and Challenges for Developments

被引:14
|
作者
Zhao, Huibo [1 ,2 ]
Liu, Xiaochen [1 ]
Zeng, Chunyang [3 ]
Liu, Wen [2 ]
Tan, Li [1 ]
机构
[1] Fuzhou Univ, Inst Mol Catalysis & Situ Operando Studies, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
[2] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Singapore 637371, Singapore
[3] Petr & Chem Ind Federat, Beijing 100723, Peoples R China
基金
中国国家自然科学基金;
关键词
SELECTIVE HYDROGENATION; INDIUM OXIDE; ACTIVE-SITE; OXIDATION; ADSORPTION; CONVERSION; STATE; GAS;
D O I
10.1021/jacs.4c08523
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conversion of thermodynamically inert CO2 into methanol holds immense promise for addressing the pressing environmental and energy challenges of our time. This article offers a succinct overview of the development of single-atom catalysts (SACs) for thermochemical hydrogenation of CO2 to methanol, encompassing research advancements, advantages, potential hurdles, and other essential aspects related to these catalysts. Our aim of this work is to provide a deeper understanding of the intricacies of the catalytic structures of the single-atom sites and their unique structure-activity relationships in catalyzing the conversion of CO2 to methanol. We also present insights into the optimal design of SACs, drawing from our own research and those of fellow scientists. This research thrust is poised to contribute significantly to the development of next-generation SACs, which are crucial in advancing the sustainable production of methanol from CO2.
引用
收藏
页码:23649 / 23662
页数:14
相关论文
共 50 条
  • [41] Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts
    Zhao Runyao
    Ji Guipeng
    Liu Zhimin
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (07):
  • [42] Insights into the mechanism in electrochemical CO2 reduction over single-atom copper alloy catalysts: A DFT study
    Liu, Tianfu
    Song, Guohui
    Liu, Xiaoju
    Chen, Zhou
    Shen, Yu
    Wang, Qi
    Peng, Zhangquan
    Wang, Guoxiong
    ISCIENCE, 2023, 26 (10)
  • [43] Single-atom catalysis for electrochemical CO2 reduction
    Jia, Mingwen
    Fan, Qun
    Liu, Shizhen
    Qiu, Jieshan
    Sun, Zhenyu
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 1 - 6
  • [44] Recent Progress of 3d Transition Metal Single-Atom Catalysts for Electrochemical CO2 Reduction
    Xu, Chaochen
    Vasileff, Anthony
    Zheng, Yao
    Qiao, Shi-Zhang
    ADVANCED MATERIALS INTERFACES, 2021, 8 (05)
  • [45] Theoretical considerations on activity of the electrochemical CO2 reduction on metal single-atom catalysts with asymmetrical active sites
    Fu, Sijia
    Liu, Xin
    Ran, Jingrun
    Jiao, Yan
    CATALYSIS TODAY, 2022, 397 : 574 - 580
  • [46] Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Zhao, Chuan
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [47] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jiang, Jian-Chao
    Chen, Jun-Chi
    Zhao, Meng-die
    Yu, Qi
    Wang, Yang-Gang
    Li, Jun
    NANO RESEARCH, 2022, 15 (08) : 7116 - 7123
  • [48] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jian-Chao Jiang
    Jun-Chi Chen
    Meng-die Zhao
    Qi Yu
    Yang-Gang Wang
    Jun Li
    Nano Research, 2022, 15 (8) : 7116 - 7123
  • [49] Rational design of graphdiyne-based single-atom catalysts for electrochemical CO2 reduction reaction
    Jiang, Liyun
    Zhao, Mengdie
    Yu, Qi
    RSC ADVANCES, 2024, 14 (37) : 27365 - 27371
  • [50] Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO2 Reduction
    Han, Shu-Guo
    Ma, Dong-Dong
    Zhu, Qi-Long
    SMALL METHODS, 2021, 5 (08)