Three-photon polarization entanglement of green light

被引:0
|
作者
Lou, Yan-Chao [1 ,2 ]
Ren, Zhi-Cheng [1 ,2 ]
Chen, Chao [1 ,2 ]
Wan, Pei [1 ,2 ]
Zhu, Wen-Zheng [1 ,2 ]
Wang, Jing [1 ,2 ]
Xue, Shu-Tian [1 ,2 ]
Dong, Bo-Wen [1 ,2 ]
Ding, Jianping [1 ,2 ]
Wang, Xi-Lin [1 ,2 ,3 ,4 ]
Wang, Hui-Tian [1 ,2 ,5 ]
机构
[1] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[3] Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr, Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 01期
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
ANGULAR-MOMENTUM STATES; QUANTUM TELEPORTATION; SINGLE PHOTONS; INFORMATION;
D O I
10.1103/PhysRevApplied.22.014052
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recently, great progress has been made in the entanglement of multiple photons at various wavelengths and with different degrees of freedom for optical quantum information applied in diverse scenarios. However, multiphoton entanglement in the transmission window of green light under water has not yet been reported. Here, by combining femtosecond-laser-based multiphoton entanglement and entanglement-maintaining frequency up-conversion techniques, we successfully generate a green two- photon polarization-entangled Bell state and a green three-photon Greenberger-Horne-Zeilinger state, whose state fidelities are 0.893 +/- 0.002 and 0.595 +/- 0.023, respectively. Our result provides a scalable method to prepare green multiphoton entanglement, which may have wide applications in underwater quantum information.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Atom-photon entanglement beyond the multi-photon resonance condition
    Kordi, Zeinab
    Ghanbari, Saeed
    Mahmoudi, Mohammad
    QUANTUM INFORMATION PROCESSING, 2016, 15 (01) : 199 - 213
  • [22] Entanglement concentration for photon systems assisted with single photons
    Wang, Xiong
    Hu, Zhan-Ning
    OPTIK, 2019, 176 : 143 - 151
  • [23] Tunable ion-photon entanglement in an optical cavity
    Stute, A.
    Casabone, B.
    Schindler, P.
    Monz, T.
    Schmidt, P. O.
    Brandstaetter, B.
    Northup, T. E.
    Blatt, R.
    NATURE, 2012, 485 (7399) : 482 - U89
  • [24] Photon losses depending on polarization mixedness
    Memarzadeh, L.
    Mancini, S.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 56 (02): : 291 - 296
  • [25] Twisted photon entanglement through turbulent air across Vienna
    Krenn, Mario
    Handsteiner, Johannes
    Fink, Matthias
    Fickler, Robert
    Zeilinger, Anton
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) : 14197 - 14201
  • [26] Superiority of photon subtraction to addition for entanglement in a multimode squeezed vacuum
    Das, Tamoghna
    Prabhu, R.
    Sen , Aditi
    Sen, Ujjwal
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [27] Entanglement generation by qubit scattering in three dimensions
    Hida, Yuichiro
    Nakazato, Hiromichi
    Yuasa, Kazuya
    Omar, Yasser
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [28] Efficient bidirectional quantum secure communication with two-photon entanglement
    Yin, Xun-Ru
    Ma, Wen-Ping
    Liu, Wei-Yan
    Shen, Dong-Su
    QUANTUM INFORMATION PROCESSING, 2013, 12 (09) : 3093 - 3102
  • [29] Realizing quantum advantage without entanglement in single-photon states
    Maldonado-Trapp, A.
    Solano, Pablo
    Hu, Anzi
    Clark, Charles W.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [30] Effect of Photon Addition on Genuine Tripartite Entanglement of Continuous Variable States
    Sathiyabama, R.
    Ahmed, A. Basherrudin Mahmud
    JOURNAL OF RUSSIAN LASER RESEARCH, 2024, 45 (02) : 127 - 136