Cluster Analysis of Scrna-Seq Data Combining Bioinformatics with Graph Attention Autoencoders and Ensemble Clustering

被引:1
作者
Yuan, Lin [1 ,2 ,3 ]
Xu, Zhijie [1 ,2 ,3 ]
Li, Zhujun [4 ]
Zhang, Shoukang [1 ,2 ,3 ]
Hu, Chunyu [1 ,2 ,3 ]
Yu, Wendong [5 ]
Wei, Hongwei [5 ]
Wang, Xingang [1 ,2 ,3 ]
Geng, Yushui [1 ,2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Minist Educ,Key Lab Comp Power Network & Informat, Jinan, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Fac Comp Sci & Technol, Shandong Engn Res Ctr Big Data Appl Technol, Jinan, Peoples R China
[3] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan, Peoples R China
[4] Jinan Springs Patent & Trademark Off, Jinan, Peoples R China
[5] Shandong Tianyi Informat Technol Co Ltd, Jinan, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024 | 2024年 / 14882卷
基金
中国国家自然科学基金;
关键词
scRNA-seq; Clustering analysis; graph attention autoencoder; integrated clustering;
D O I
10.1007/978-981-97-5692-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As single-cell RNA sequencing (scRNA-seq) technology has rapidly become a powerful technique for revealing gene expression information at the cellular level. In scRNA-seq data analysis, cell clustering is a key step in downstream analysis as it can identify cell types and discover new cell subtypes. However, the high dimensionality, sparsity, and high noise characteristics of scRNA-seq datasets present significant challenges for clustering analysis.In this study, a model based on bipartite graph integration clustering and graph attention autoencoder is proposed. Firstly, the scRNA-seq dataset is preprocessed using network enhancement (NE) and principal component analysis (PCA) for denoising and feature selection. Next, a graph attention autoencoder is employed for dimension reduction to obtain low-dimensional embeddings. Finally, bipartite graph integration clustering is utilized to derive the final clustering results based on the relationship between cells and low-dimensional embeddings. Based on various clustering metrics, a comparison was made between different scRNA-seq datasets, and the experimental results showed that scBAGA outperformed other advanced methods. This indicates that our model can serve as a reliable classification tool.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 22 条
  • [21] Integration of Multi-Omics Data for Gene Regulatory Network Inference and Application to Breast Cancer
    Yuan, Lin
    Guo, Le-Hang
    Yuan, Chang-An
    Zhang, Youhua
    Han, Kyungsook
    Nandi, Asoke K.
    Honig, Barry
    Huang, De-Shuang
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (03) : 782 - 791
  • [22] Nonconvex Penalty Based Low-Rank Representation and Sparse Regression for eQTL Mapping
    Yuan, Lin
    Zhu, Lin
    Guo, Wei-Li
    Zhou, Xiaobo
    Zhang, Youhua
    Huang, Zhenhua
    Huang, De-Shuang
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (05) : 1154 - 1164