Cluster Analysis of Scrna-Seq Data Combining Bioinformatics with Graph Attention Autoencoders and Ensemble Clustering

被引:1
作者
Yuan, Lin [1 ,2 ,3 ]
Xu, Zhijie [1 ,2 ,3 ]
Li, Zhujun [4 ]
Zhang, Shoukang [1 ,2 ,3 ]
Hu, Chunyu [1 ,2 ,3 ]
Yu, Wendong [5 ]
Wei, Hongwei [5 ]
Wang, Xingang [1 ,2 ,3 ]
Geng, Yushui [1 ,2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Minist Educ,Key Lab Comp Power Network & Informat, Jinan, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Fac Comp Sci & Technol, Shandong Engn Res Ctr Big Data Appl Technol, Jinan, Peoples R China
[3] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan, Peoples R China
[4] Jinan Springs Patent & Trademark Off, Jinan, Peoples R China
[5] Shandong Tianyi Informat Technol Co Ltd, Jinan, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024 | 2024年 / 14882卷
基金
中国国家自然科学基金;
关键词
scRNA-seq; Clustering analysis; graph attention autoencoder; integrated clustering;
D O I
10.1007/978-981-97-5692-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As single-cell RNA sequencing (scRNA-seq) technology has rapidly become a powerful technique for revealing gene expression information at the cellular level. In scRNA-seq data analysis, cell clustering is a key step in downstream analysis as it can identify cell types and discover new cell subtypes. However, the high dimensionality, sparsity, and high noise characteristics of scRNA-seq datasets present significant challenges for clustering analysis.In this study, a model based on bipartite graph integration clustering and graph attention autoencoder is proposed. Firstly, the scRNA-seq dataset is preprocessed using network enhancement (NE) and principal component analysis (PCA) for denoising and feature selection. Next, a graph attention autoencoder is employed for dimension reduction to obtain low-dimensional embeddings. Finally, bipartite graph integration clustering is utilized to derive the final clustering results based on the relationship between cells and low-dimensional embeddings. Based on various clustering metrics, a comparison was made between different scRNA-seq datasets, and the experimental results showed that scBAGA outperformed other advanced methods. This indicates that our model can serve as a reliable classification tool.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 22 条
  • [11] Spatial reconstruction of single-cell gene expression data
    Satija, Rahul
    Farrell, Jeffrey A.
    Gennert, David
    Schier, Alexander F.
    Regev, Aviv
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (05) : 495 - U206
  • [12] Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
    Schaum, Nicholas
    Karkanias, Jim
    Neff, Norma F.
    May, Andrew P.
    Quake, Stephen R.
    Wyss-Coray, Tony
    Darmanis, Spyros
    Batson, Joshua
    Botvinnik, Olga
    Chen, Michelle B.
    Chen, Steven
    Green, Foad
    Jones, Robert C.
    Maynard, Ashley
    Penland, Lolita
    Pisco, Angela Oliveira
    Sit, Rene V.
    Stanley, Geoffrey M.
    Webber, James T.
    Zanini, Fabio
    Baghel, Ankit S.
    Bakerman, Isaac
    Bansal, Ishita
    Berdnik, Daniela
    Bilen, Biter
    Brownfield, Douglas
    Cain, Corey
    Cho, Min
    Cirolia, Giana
    Conley, Stephanie D.
    Demers, Aaron
    Demir, Kubilay
    de Morree, Antoine
    Divita, Tessa
    du Bois, Haley
    Dulgeroff, Laughing Bear Torrez
    Ebadi, Hamid
    Espinoza, F. Hernan
    Fish, Matt
    Gan, Qiang
    George, Benson M.
    Gillich, Astrid
    Genetiano, Geraldine
    Gu, Xueying
    Gulati, Gunsagar S.
    Hang, Yan
    Hosseinzadeh, Shayan
    Huang, Albin
    Iram, Tal
    Isobe, Taichi
    [J]. NATURE, 2018, 562 (7727) : 367 - +
  • [13] Single-cell sequencing-based technologies will revolutionize whole-organism science
    Shapiro, Ehud
    Biezuner, Tamir
    Linnarsson, Sten
    [J]. NATURE REVIEWS GENETICS, 2013, 14 (09) : 618 - 630
  • [14] Prediction of Back-splicing sites for CircRNA formation based on convolutional neural networks
    Shen, Zhen
    Shao, Yan Ling
    Liu, Wei
    Zhang, Qinhu
    Yuan, Lin
    [J]. BMC GENOMICS, 2022, 23 (01)
  • [15] Clustering single-cell RNA-seq data with a model-based deep learning approach
    Tian, Tian
    Wan, Ji
    Song, Qi
    Wei, Zhi
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (04) : 191 - 198
  • [16] Network enhancement as a general method to denoise weighted biological networks
    Wang, Bo
    Pourshafeie, Armin
    Zitnik, Marinka
    Zhu, Junjie
    Bustamante, Carlos D.
    Batzoglou, Serafim
    Leskovec, Jure
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [17] scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering
    Wang, Yunhe
    Yu, Zhuohan
    Li, Shaochuan
    Bian, Chuang
    Liang, Yanchun
    Wong, Ka-Chun
    Li, Xiangtao
    [J]. BIOINFORMATICS, 2023, 39 (02)
  • [18] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    [J]. GENOME BIOLOGY, 2018, 19
  • [19] iCircDA-NEAE: Accelerated attribute network embedding and dynamic convolutional autoencoder for circRNA-disease associations prediction
    Yuan, Lin
    Zhao, Jiawang
    Shen, Zhen
    Zhang, Qinhu
    Geng, Yushui
    Zheng, Chun-Hou
    Huang, De-Shuang
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (08)
  • [20] A machine learning framework that integrates multi-omics data predicts cancer-related LncRNAs
    Yuan, Lin
    Zhao, Jing
    Sun, Tao
    Shen, Zhen
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)