Cluster Analysis of Scrna-Seq Data Combining Bioinformatics with Graph Attention Autoencoders and Ensemble Clustering

被引:1
作者
Yuan, Lin [1 ,2 ,3 ]
Xu, Zhijie [1 ,2 ,3 ]
Li, Zhujun [4 ]
Zhang, Shoukang [1 ,2 ,3 ]
Hu, Chunyu [1 ,2 ,3 ]
Yu, Wendong [5 ]
Wei, Hongwei [5 ]
Wang, Xingang [1 ,2 ,3 ]
Geng, Yushui [1 ,2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Minist Educ,Key Lab Comp Power Network & Informat, Jinan, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Fac Comp Sci & Technol, Shandong Engn Res Ctr Big Data Appl Technol, Jinan, Peoples R China
[3] Shandong Fundamental Res Ctr Comp Sci, Shandong Prov Key Lab Comp Networks, Jinan, Peoples R China
[4] Jinan Springs Patent & Trademark Off, Jinan, Peoples R China
[5] Shandong Tianyi Informat Technol Co Ltd, Jinan, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT II, ICIC 2024 | 2024年 / 14882卷
基金
中国国家自然科学基金;
关键词
scRNA-seq; Clustering analysis; graph attention autoencoder; integrated clustering;
D O I
10.1007/978-981-97-5692-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As single-cell RNA sequencing (scRNA-seq) technology has rapidly become a powerful technique for revealing gene expression information at the cellular level. In scRNA-seq data analysis, cell clustering is a key step in downstream analysis as it can identify cell types and discover new cell subtypes. However, the high dimensionality, sparsity, and high noise characteristics of scRNA-seq datasets present significant challenges for clustering analysis.In this study, a model based on bipartite graph integration clustering and graph attention autoencoder is proposed. Firstly, the scRNA-seq dataset is preprocessed using network enhancement (NE) and principal component analysis (PCA) for denoising and feature selection. Next, a graph attention autoencoder is employed for dimension reduction to obtain low-dimensional embeddings. Finally, bipartite graph integration clustering is utilized to derive the final clustering results based on the relationship between cells and low-dimensional embeddings. Based on various clustering metrics, a comparison was made between different scRNA-seq datasets, and the experimental results showed that scBAGA outperformed other advanced methods. This indicates that our model can serve as a reliable classification tool.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 22 条
  • [1] Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing
    Bach, Karsten
    Pensa, Sara
    Grzelak, Marta
    Hadfield, James
    Adams, David J.
    Marioni, John C.
    Khaled, Walid T.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [2] Deep soft K-means clustering with self-training for single-cell RNA sequence data
    Chen, Liang
    Wang, Weinan
    Zhai, Yuyao
    Deng, Minghua
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)
  • [3] Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity
    Chen, Renchao
    Wu, Xiaoji
    Jiang, Lan
    Zhang, Yi
    [J]. CELL REPORTS, 2017, 18 (13): : 3227 - 3241
  • [4] scGAC: a graph attentional architecture for clustering single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    [J]. BIOINFORMATICS, 2022, 38 (08) : 2187 - 2193
  • [5] Single-cell RNA-seq denoising using a deep count autoencoder
    Eraslan, Goekcen
    Simon, Lukas M.
    Mircea, Maria
    Mueller, Nikola S.
    Theis, Fabian J.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
  • [7] The Technology and Biology of Single-Cell RNA Sequencing
    Kolodziejczyk, Aleksandra A.
    Kim, Jong Kyoung
    Svensson, Valentine
    Marioni, John C.
    Teichmann, Sarah A.
    [J]. MOLECULAR CELL, 2015, 58 (04) : 610 - 620
  • [8] Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
    Li, Xiangjie
    Wang, Kui
    Lyu, Yafei
    Pan, Huize
    Zhang, Jingxiao
    Stambolian, Dwight
    Susztak, Katalin
    Reilly, Muredach P.
    Hu, Gang
    Li, Mingyao
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] A Single-Cell Transcriptome Atlas of the Human Pancreas
    Muraro, Mauro J.
    Dharmadhikari, Gitanjali
    Gruen, Dominic
    Groen, Nathalie
    Dielen, Tim
    Jansen, Erik
    van Gurp, Leon
    Engelse, Marten A.
    Carlotti, Francoise
    de Koning, Eelco J. P.
    van Oudenaarden, Alexander
    [J]. CELL SYSTEMS, 2016, 3 (04) : 385 - +
  • [10] Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes
    Romanov, Roman A.
    Zeisel, Amit
    Bakker, Joanne
    Girach, Fatima
    Hellysaz, Arash
    Tomer, Raju
    Alpar, Alan
    Mulder, Jan
    Clotman, Frederic
    Keimpema, Erik
    Hsueh, Brian
    Crow, Ailey K.
    Martens, Henrik
    Schwindling, Christian
    Calvigioni, Daniela
    Bains, Jaideep S.
    Mate, Zoltan
    Szabo, Gabor
    Yanagawa, Yuchio
    Zhang, Ming-Dong
    Rendeiro, Andre
    Farlik, Matthias
    Uhlen, Mathias
    Wulff, Peer
    Bock, Christoph
    Broberger, Christian
    Deisseroth, Karl
    Hokfelt, Tomas
    Linnarsson, Sten
    Horvath, Tamas L.
    Harkany, Tibor
    [J]. NATURE NEUROSCIENCE, 2017, 20 (02) : 176 - 188