D- Semiprime Rings

被引:0
|
作者
Alosaimi, Maram [1 ]
Al Khalaf, Ahmad [1 ]
Masri, Rohaidah [2 ]
Taha, Iman [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Sultan Idris Univ, Fac Sci & Math, Dept Math, Tanjong Malim, Perak, Malaysia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Derivation; semiprime ring; delta-semiprime ring; delta-ideal; PRIME LIE-RINGS; COMMUTATIVE RING; DERIVATIONS;
D O I
10.29020/nybg.ejpam.v17i3.5210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative and 2-torsion-free ring with an identity. in this work, we will generaliz the results of differentially prime rings in [18] by applying the hypotheses in a differentially semiprime rings. In particular, we have proved that if R is a D- semiprime ring, then either R is a commutative ring or D is a semiprime ring.
引用
收藏
页码:2264 / 2275
页数:12
相关论文
共 50 条
  • [41] ON SYMMETRIC BIDERIVATIONS OF SEMIPRIME RINGS
    Ali, Asma
    Shujat, Faiza
    CONTEMPORARY RING THEORY 2011, 2012, : 196 - 208
  • [42] On generalized derivations in semiprime rings involving anticommutator
    Mohammad Ashraf
    Sajad Ahmad Pary
    Mohd Arif Raza
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2019, 60 : 587 - 598
  • [43] On multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Ali, Shakir
    AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 65 - 79
  • [44] Centralizers and Jordan triple derivations of semiprime rings
    Lee, Tsiu-Kwen
    Truong Cong Quynh
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 236 - 251
  • [45] Certain basic functional identities of semiprime rings
    Lee, Tsiu-Kwen
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 17 - 29
  • [46] On certain functional equations related to Jordan triple (θ, φ)-derivations on semiprime rings
    Fosner, Ajda
    Vukman, Joso
    MONATSHEFTE FUR MATHEMATIK, 2011, 162 (02): : 157 - 165
  • [47] A NEW CLASS OF SEMIPRIME RINGS
    Calugareanu, Grigore
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (01): : 21 - 30
  • [48] Commutators in semiprime gamma rings
    Al Khalaf, Ahmad
    Taha, Iman
    Artemovych, Orest D.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)
  • [49] SEMIPRIME RINGS WITH INVOLUTION AND CENTRALIZERS
    Ansari, Abu Zaid
    Shujat, Faiza
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (3-4): : 709 - 717
  • [50] DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Argac, Nurcan
    Inceboz, Hulya G.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 997 - 1005