D- Semiprime Rings

被引:0
|
作者
Alosaimi, Maram [1 ]
Al Khalaf, Ahmad [1 ]
Masri, Rohaidah [2 ]
Taha, Iman [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Sultan Idris Univ, Fac Sci & Math, Dept Math, Tanjong Malim, Perak, Malaysia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Derivation; semiprime ring; delta-semiprime ring; delta-ideal; PRIME LIE-RINGS; COMMUTATIVE RING; DERIVATIONS;
D O I
10.29020/nybg.ejpam.v17i3.5210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative and 2-torsion-free ring with an identity. in this work, we will generaliz the results of differentially prime rings in [18] by applying the hypotheses in a differentially semiprime rings. In particular, we have proved that if R is a D- semiprime ring, then either R is a commutative ring or D is a semiprime ring.
引用
收藏
页码:2264 / 2275
页数:12
相关论文
共 50 条
  • [31] On semiprime rings with multiplicative (generalized)-derivations
    Khan S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (1): : 119 - 128
  • [32] DERIVATIONS ON SEMIPRIME Γ-RINGS
    Khan, Abdul Rauf
    Javaid, Imran
    Chaudhry, Muhammad Anwar
    UTILITAS MATHEMATICA, 2013, 90 : 171 - 185
  • [33] Generalized reverse derivations on semiprime rings
    Aboubakr, A.
    Gonzalez, S.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) : 199 - 205
  • [34] On τ-centralizers of semiprime rings
    Albas, E.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (02) : 191 - 196
  • [35] On generalized derivations in semiprime rings involving anticommutator
    Ashraf, Mohammad
    Pary, Sajad Ahmad
    Raza, Mohd Arif
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (03): : 587 - 598
  • [36] Lie and Jordan structures of differentially semiprime rings
    Artemovych, Orest D.
    Lukashenko, Maria P.
    ALGEBRA & DISCRETE MATHEMATICS, 2015, 20 (01): : 13 - 31
  • [37] A RESULT RELATED TO DERIVATIONS ON UNITAL SEMIPRIME RINGS
    Kosi-Ulbl, Irena
    Sirovnik, Nejc
    Vukman, Joso
    GLASNIK MATEMATICKI, 2021, 56 (01) : 95 - 106
  • [38] Generalized derivations on Lie ideals in semiprime rings
    Aboubakr A.
    González S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 841 - 850
  • [39] An Engel condition with an additive mapping in semiprime rings
    MAJA FOŠNER
    NADEEM UR REHMAN
    JOSO VUKMAN
    Proceedings - Mathematical Sciences, 2014, 124 : 497 - 500
  • [40] On multiplicative (generalized)-derivations in prime and semiprime rings
    Basudeb Dhara
    Shakir Ali
    Aequationes mathematicae, 2013, 86 : 65 - 79