D- Semiprime Rings

被引:0
|
作者
Alosaimi, Maram [1 ]
Al Khalaf, Ahmad [1 ]
Masri, Rohaidah [2 ]
Taha, Iman [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Sultan Idris Univ, Fac Sci & Math, Dept Math, Tanjong Malim, Perak, Malaysia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Derivation; semiprime ring; delta-semiprime ring; delta-ideal; PRIME LIE-RINGS; COMMUTATIVE RING; DERIVATIONS;
D O I
10.29020/nybg.ejpam.v17i3.5210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative and 2-torsion-free ring with an identity. in this work, we will generaliz the results of differentially prime rings in [18] by applying the hypotheses in a differentially semiprime rings. In particular, we have proved that if R is a D- semiprime ring, then either R is a commutative ring or D is a semiprime ring.
引用
收藏
页码:2264 / 2275
页数:12
相关论文
共 50 条
  • [21] IDENTITIES WITH ADDITIVE MAPPINGS IN SEMIPRIME RINGS
    Fosner, Ajda
    Rehman, Nadeem Ur
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 207 - 211
  • [22] Left ideals and derivations in semiprime rings
    Lanski, C
    JOURNAL OF ALGEBRA, 2004, 277 (02) : 658 - 667
  • [23] On commuting additive mappings on semiprime rings
    Lapuangkham, Siriporn
    Leerawat, Utsanee
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (05)
  • [24] Action of higher derivations on semiprime rings
    Ali, Shakir
    Varshney, Vaishali
    GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) : 7 - 19
  • [25] A note on generalized derivations of semiprime rings
    Vukman, Joso
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370
  • [26] IDENTITIES WITH GENERALIZED DERIVATIONS IN SEMIPRIME RINGS
    Dhara, Basudeb
    Ali, Shakir
    Pattanayak, Atanu
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 453 - 460
  • [27] Generalized reverse derivations on semiprime rings
    A. Aboubakr
    S. González
    Siberian Mathematical Journal, 2015, 56 : 199 - 205
  • [28] On certain subgroups of semiprime rings with derivations
    Wong, TL
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1961 - 1968
  • [29] (σ, τ)-DERIVATIONS OF SEMIPRIME RINGS
    Atteya, M. J.
    Haetinger, C.
    Rasen, D. I.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (02): : 239 - 246
  • [30] On Certain Functional Equation in Semiprime Rings
    Sirovnik, Nejc
    Vukman, Joso
    ALGEBRA COLLOQUIUM, 2016, 23 (01) : 65 - 70