D- Semiprime Rings

被引:0
|
作者
Alosaimi, Maram [1 ]
Al Khalaf, Ahmad [1 ]
Masri, Rohaidah [2 ]
Taha, Iman [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Sultan Idris Univ, Fac Sci & Math, Dept Math, Tanjong Malim, Perak, Malaysia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 03期
关键词
Derivation; semiprime ring; delta-semiprime ring; delta-ideal; PRIME LIE-RINGS; COMMUTATIVE RING; DERIVATIONS;
D O I
10.29020/nybg.ejpam.v17i3.5210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative and 2-torsion-free ring with an identity. in this work, we will generaliz the results of differentially prime rings in [18] by applying the hypotheses in a differentially semiprime rings. In particular, we have proved that if R is a D- semiprime ring, then either R is a commutative ring or D is a semiprime ring.
引用
收藏
页码:2264 / 2275
页数:12
相关论文
共 50 条
  • [1] Derivations of differentially semiprime rings
    Al Khalaf, Ahmad
    Taha, Iman
    Artemovych, Orest D.
    Aljouiiee, Abdullah
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (05)
  • [2] Lie Ideals and Homoderivations in Semiprime Rings
    Hummdi, Ali Yahya
    Bedir, Zeliha
    Sogutcu, Emine Koc
    Golbasi, Oznur
    Rehman, Nadeem ur
    MATHEMATICS, 2025, 13 (04)
  • [3] On Derivations in Semiprime Rings
    Ali, Shakir
    Huang Shuliang
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (06) : 1023 - 1033
  • [4] On Derivations in Semiprime Rings
    Shakir Ali
    Huang Shuliang
    Algebras and Representation Theory, 2012, 15 : 1023 - 1033
  • [5] On generalized ()-derivations in semiprime rings with involution
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    MATHEMATICA SLOVACA, 2012, 62 (03) : 451 - 460
  • [6] On τ-centralizers of semiprime rings
    E. Albaş
    Siberian Mathematical Journal, 2007, 48 : 191 - 196
  • [7] On centralizers of semiprime rings
    Joso Vukman
    Irena Kosi-Ulbl
    aequationes mathematicae, 2003, 66 (3) : 277 - 283
  • [8] IDENTITIES WITH MULTIPLICATIVE GENERALIZED ( α, α )-DERIVATIONS OF SEMIPRIME RINGS
    Sandhu, Gurninder Singh
    Ayran, Ayse
    Aydin, Neset
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (03): : 365 - 382
  • [9] ON SKEW-COMMUTING MAPPINGS IN SEMIPRIME RINGS
    Fosner, Maja
    Marcen, Benjamin
    Rehman, Nadeem Ur
    MATHEMATICA SLOVACA, 2016, 66 (04) : 811 - 814
  • [10] On Semiprime Rings with Generalized Derivations
    Khan, Mohd Rais
    Hasnain, Mohammad Mueenul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04): : 565 - 571