Per- and polyfluoroalkyl substances (PFAS) fate and transport across a groundwater-surface water interface

被引:1
|
作者
McFarlan, Eleanor L. [1 ]
Lemke, Lawrence D. [1 ,2 ]
机构
[1] Cent Michigan Univ, Dept Earth & Atmospher Sci, Mt Pleasant, MI 48859 USA
[2] Cent Michigan Univ, Inst Great Lakes Res, Mt Pleasant, MI USA
关键词
PFAS; GSI; Transport; Modeling; Partitioning; Ponds; PERFLUOROALKYL SUBSTANCES; SORPTION; ACIDS; SOIL;
D O I
10.1016/j.scitotenv.2024.175672
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants of concern whose fate and transport in environmental media are incompletely understood. In the 1960s, PFAS were dumped in the House Street Disposal Site, an unlined landfill on the crest of a glacial end moraine near Rockford, Michigan, USA. In 2017, PFAS were discovered in groundwater and subsequently, a network of monitoring wells delineated a 2 mi (3 km) PFAS plume migrating downgradient toward the Rogue River. Today, the Michigan Department of Natural Resources (MDNR) operates fish-rearing ponds in the area where the plume intersects the groundwater-surface water interface (GSI). Each year, the MDNR fills these man-made ponds using water from a nearby creek. Springs in the ponds prevent them from draining completely at the end of fish-rearing each fall. We sampled surface water and modeled groundwater flow to investigate PFAS transport across the GSI. Numerical models constructed with and without the fishponds did not substantially change MODFLOW model calibration curves or predicted MODPATH flow lines, indicating that PFAS transport is dominated by the regional flow system with limited influence from semiannual changes to boundary conditions at the GSI. Surface water samples collected from five locations within and adjacent to the fishponds were analyzed using EPA Draft Method 1633. PFAS were detected at all locations with the highest total PFAS >60 ng/L in the fishponds. Mixing models based on total PFAS indicate that approximately 10 % of the fishpond water is sourced by groundwater. However, similar analyses with perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) imply that groundwater comprises as much as 30 % of water in the ponds, suggesting differential movement of individual PFAS across the groundwater-surface water interface. Additional investigation of PFAS within the pond sediments is needed to better understand partitioning and differential transport behavior across the GSI.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Per- and polyfluoroalkyl substances (PFAS)—contaminants of emerging concern
    Erin S. Baker
    Detlef R. U. Knappe
    Analytical and Bioanalytical Chemistry, 2022, 414 : 1187 - 1188
  • [32] Review: Hydrothermal treatment of per- and polyfluoroalkyl substances (PFAS)
    Li, Jianna
    Pinkard, Brian R.
    Wang, Shuzhong
    Novosselov, Igor V.
    CHEMOSPHERE, 2022, 307
  • [33] Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS)
    Ehrlich, Veronika
    Bil, Wieneke
    Vandebriel, Rob
    Granum, Berit
    Luijten, Mirjam
    Lindeman, Birgitte
    Grandjean, Philippe
    Kaiser, Andreas-Marius
    Hauzenberger, Ingrid
    Hartmann, Christina
    Gundacker, Claudia
    Uhl, Maria
    ENVIRONMENTAL HEALTH, 2023, 22 (01)
  • [34] Per- and polyfluoroalkyl substances (PFAS) usage in solar photovoltaics
    Nain, Preeti
    Anctil, Annick
    2023 IEEE 50TH PHOTOVOLTAIC SPECIALISTS CONFERENCE, PVSC, 2023,
  • [35] Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review
    Charbel Abou-Khalil
    Dibyendu Sarkar
    Pamela Braykaa
    Michel C. Boufadel
    Current Pollution Reports, 2022, 8 : 422 - 444
  • [36] Mobilization of Per- and Polyfluoroalkyl Substances (PFAS) in Soils: A Review
    Abou-Khalil, Charbel
    Sarkar, Dibyendu
    Braykaa, Pamela
    Boufadel, Michel C.
    CURRENT POLLUTION REPORTS, 2022, 8 (04) : 422 - 444
  • [37] Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS)
    Veronika Ehrlich
    Wieneke Bil
    Rob Vandebriel
    Berit Granum
    Mirjam Luijten
    Birgitte Lindeman
    Philippe Grandjean
    Andreas-Marius Kaiser
    Ingrid Hauzenberger
    Christina Hartmann
    Claudia Gundacker
    Maria Uhl
    Environmental Health, 22
  • [38] Per- and polyfluoroalkyl substances (PFAS)-contaminants of emerging concern
    Baker, Erin S.
    Knappe, Detlef R. U.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (03) : 1187 - 1188
  • [39] Per- and polyfluoroalkyl substances (PFAS) on aquatic food products
    Ural, Gizem Nazli
    Topuz, Osman Kadir
    Unluesayin, Mustafa
    TOXIN REVIEWS, 2024,
  • [40] Per- and polyfluoroalkyl substances (PFAS) in solar photovoltaic modules
    Nain, Preeti
    Anctil, Annick
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 215