Per- and polyfluoroalkyl substances (PFAS) fate and transport across a groundwater-surface water interface

被引:1
|
作者
McFarlan, Eleanor L. [1 ]
Lemke, Lawrence D. [1 ,2 ]
机构
[1] Cent Michigan Univ, Dept Earth & Atmospher Sci, Mt Pleasant, MI 48859 USA
[2] Cent Michigan Univ, Inst Great Lakes Res, Mt Pleasant, MI USA
关键词
PFAS; GSI; Transport; Modeling; Partitioning; Ponds; PERFLUOROALKYL SUBSTANCES; SORPTION; ACIDS; SOIL;
D O I
10.1016/j.scitotenv.2024.175672
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants of concern whose fate and transport in environmental media are incompletely understood. In the 1960s, PFAS were dumped in the House Street Disposal Site, an unlined landfill on the crest of a glacial end moraine near Rockford, Michigan, USA. In 2017, PFAS were discovered in groundwater and subsequently, a network of monitoring wells delineated a 2 mi (3 km) PFAS plume migrating downgradient toward the Rogue River. Today, the Michigan Department of Natural Resources (MDNR) operates fish-rearing ponds in the area where the plume intersects the groundwater-surface water interface (GSI). Each year, the MDNR fills these man-made ponds using water from a nearby creek. Springs in the ponds prevent them from draining completely at the end of fish-rearing each fall. We sampled surface water and modeled groundwater flow to investigate PFAS transport across the GSI. Numerical models constructed with and without the fishponds did not substantially change MODFLOW model calibration curves or predicted MODPATH flow lines, indicating that PFAS transport is dominated by the regional flow system with limited influence from semiannual changes to boundary conditions at the GSI. Surface water samples collected from five locations within and adjacent to the fishponds were analyzed using EPA Draft Method 1633. PFAS were detected at all locations with the highest total PFAS >60 ng/L in the fishponds. Mixing models based on total PFAS indicate that approximately 10 % of the fishpond water is sourced by groundwater. However, similar analyses with perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) imply that groundwater comprises as much as 30 % of water in the ponds, suggesting differential movement of individual PFAS across the groundwater-surface water interface. Additional investigation of PFAS within the pond sediments is needed to better understand partitioning and differential transport behavior across the GSI.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Adsorption of Per- and Polyfluoroalkyl Substances (PFAS) by Aquifer Materials: the Important Role of Dolomite
    Zhao, Yanan
    Min, Xiaopeng
    Xu, Shangping
    Wang, Yin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2023, 10 (10) : 931 - 936
  • [22] Fate and Transport of Per- and Polyfluoroalkyl Substances (PFAS) at Aqueous Film Forming Foam (AFFF) Discharge Sites: A Review
    McGarr, Jeffery Tyler
    Mbonimpa, Eric Gentil
    McAvoy, Drew Clifton
    Soltanian, Mohamad Reza
    SOIL SYSTEMS, 2023, 7 (02)
  • [23] Uptake of per- and polyfluoroalkyl substances (PFAS) by soybean across two generations
    Zhang, Weilan
    Tran, Nina
    Liang, Yanna
    JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2022, 8
  • [24] Immobilization of per- and polyfluoroalkyl substances (PFAS): Comparison of leaching behavior by three different leaching tests
    Bierbaum, Thomas
    Klaas, Norbert
    Braun, Juergen
    Nuerenberg, Gudrun
    Lange, Frank Thomas
    Haslauer, Claus
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 876
  • [25] Biodegradation of per- and polyfluoroalkyl substances (PFAS): A review
    Zhang, Zhiming
    Sarkar, Dibyendu
    Biswas, Jayanta Kumar
    Datta, Rupali
    BIORESOURCE TECHNOLOGY, 2022, 344
  • [26] Degradation of per- and polyfluoroalkyl substances (PFAS) in wastewater effluents by photocatalysis for water reuse
    Xia, Chunjie
    Lim, Xian
    Yang, Haoran
    Goodson, Boyd M.
    Liu, Jia
    JOURNAL OF WATER PROCESS ENGINEERING, 2022, 46
  • [27] An Overview of Per- and Polyfluoroalkyl Substances (PFAS) in the Environment: Source, Fate, Risk and Regulations
    Abunada, Ziyad
    Alazaiza, Motasem Y. D.
    Bashir, Mohammed J. K.
    WATER, 2020, 12 (12)
  • [28] Investigating the sources and fate of per- and polyfluoroalkyl substances (PFAS) in food waste compost
    Timshina, Alina S.
    Robey, Nicole M.
    Oldnettle, Allison
    Barron, Stephan
    Mehdi, Qaim
    Cerlanek, Allison
    Townsend, Timothy G.
    Bowden, John A.
    WASTE MANAGEMENT, 2024, 180 : 125 - 134
  • [29] A Review of Analytical Methods and Technologies for Monitoring Per- and Polyfluoroalkyl Substances (PFAS) in Water
    Nahar, Kamrun
    Zulkarnain, Noor Azwa
    Niven, Robert K.
    WATER, 2023, 15 (20)
  • [30] Challenges and Remediation Strategies for Per- and Polyfluoroalkyl Substances (PFAS) Contamination in Composting
    Biek, Sali Khair
    Khudur, Leadin S.
    Ball, Andrew S.
    SUSTAINABILITY, 2024, 16 (11)