Solid-state rigid polymer composite electrolytes with in-situ formed nano-crystalline lithium ion pathways for lithium-metal batteries

被引:1
作者
Wei, Zhuangzhuang [1 ]
Huang, Jun [1 ]
Liao, Zhu [1 ]
Hu, Anyi [1 ]
Zhang, Zhengxi [1 ,4 ]
Orita, Akihiro [2 ]
Saito, Nagahiro [3 ]
Yang, Li [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Showa Denko Mat Co, Tokyo 1006606, Japan
[3] Nagoya Univ, Dept Chem Syst Engn, Nagoya 4648603, Japan
[4] Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
In-situ formation; Nanocrystals; Rigid polymers; Wide operating temperature; Lithium-metal batteries; TRANSPORT; LIQUIDS;
D O I
10.1016/j.ensm.2024.103714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-based solid-state electrolytes with excellent processability and flexibility are ideal candidates for commercialisation in lithium-metal batteries. However, the current polymer-based solid-state electrolytes still have many problems such as low ionic conductivity, limited Li+ + transport number and high interfacial resistance with electrodes. To address the above challenges, a solid-state rigid polymer composite electrolyte with high ionic conductivity (2.8 mS cm- 1 ) has been prepared based on the rigid polymer poly(2, 2 '-disulfonyl-4, '-disulfonyl-4, 4 '- '- benzidine terephthalamide) (PBDT). Locally aligned PBDT-EMImN(CN)2 2 grains are interspersed with in-situ formed interconnected LiFSI to form the structure of the polymer composite electrolyte. The formation of defective LiFSI nanocrystals at grain boundaries inside the polymer electrolyte acts as additional conductive networks providing fast Li+ + transportation (t Li + = 0.59). The flexible region in the electrolyte gives excellent interfacial impedance (32.5 Omega cm2) 2 ) with Li-metal electrode. The Li||Li batteries can be stably cycled for over 1000 cycles at 1 mA cm- 2 (25 degrees C). The assembled Li||LiFePO4 4 batteries exhibit excellent cycling and multiplication performance over a wide operating temperature (from-20 to 60 degrees C). Moreover, this electrolyte material exhibits compatibility with high-voltage cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 batteries. This electrolyte and design strategy is expected to inspire the realization of all-weather practical solid-state lithium-metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Polyethylene Oxide-Based Composites as Solid-State Polymer Electrolytes for Lithium Metal Batteries: A Mini Review
    Zhao, Shuangshuang
    Wu, Qinxia
    Ma, Wenqing
    Yang, Lishan
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [42] Polar groups promoting in-situ polymerization phase separation for solid electrolytes enabling solid-state lithium batteries
    Luo, Yongrui
    Qian, Yinnan
    Cai, Minghui
    Zhang, Pengtao
    Li, Jixiao
    Luo, Zhaoyan
    Hu, Jiangtao
    Li, Yongliang
    Zhang, Qianling
    Ren, Xiangzhong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 53 - 62
  • [43] Advances in Ordered Architecture Design of Composite Solid Electrolytes for Solid-State Lithium Batteries
    Sun, Jichang
    Liu, Chuanbang
    Liu, Huaiyin
    Li, Junwei
    Zheng, Penglun
    Zheng, Yun
    Liu, Zhihong
    CHEMICAL RECORD, 2023, 23 (06)
  • [44] Solid polymer electrolytes with dual salts enhance lithium-metal interfacial stability for long cycle performance of lithium batteries
    Liu, Dong
    Liu, Xiaofeng
    Zheng, Lifei
    Chen, Fei
    Guo, Changxiang
    POLYMER, 2024, 313
  • [45] A high-performance solid-state polymer electrolyte for lithium-metal battery
    Wang, Yumei
    Yi, Qiang
    Xu, Xiaoyu
    Lu, Li
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [46] Unveiling the potential of emergent nanoscale composite polymer electrolytes for safe and efficient all solid-state lithium-ion batteries
    Murali, Adhigan
    Ramesh, R.
    Sakar, Mohan
    Park, Seonjoo
    Han, Sung Soo
    RSC ADVANCES, 2024, 14 (42) : 30618 - 30629
  • [47] In Situ Coordinated MOF-Polymer Composite Electrolyte for Solid-State Lithium Metal Batteries with Exceptional High-Rate Performance
    Chai, Yan
    Gao, Jiansheng
    Yang, Liangtao
    Wu, Wei
    Ning, De
    Chen, Zhongjun
    Huang, Wanxia
    Zhang, Gaoyuan
    Gao, Rui
    Zhou, Dong
    Wang, Jun
    Huang, Si-Min
    Li, Yongli
    SMALL, 2025,
  • [48] Solid-state electrolytes based on metal-organic frameworks for enabling high-performance lithium-metal batteries: Fundamentals, progress, and perspectives
    Wang, Hongyao
    Duan, Song
    Zheng, Yun
    Qian, Lanting
    Liao, Can
    Dong, Li
    Guo, Huisong
    Ma, Chunxiang
    Yan, Wei
    Zhang, Jiujun
    ETRANSPORTATION, 2024, 20
  • [49] Current progress and future perspectives of inorganic/organic composite solid electrolytes for solid-state lithium metal batteries
    Wang, Yuchen
    Huang, Tianrun
    Li, Chenrui
    Zhang, Xiangfeng
    Xia, Shuixin
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 318
  • [50] A new metal-organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries
    Li, Ying
    Xu, Yanjun
    Han, Xingqi
    Han, Di
    Wu, Xuesong
    Wang, Xinlong
    Su, Zhongmin
    CHINESE CHEMICAL LETTERS, 2024, 35 (09)