Solid-state rigid polymer composite electrolytes with in-situ formed nano-crystalline lithium ion pathways for lithium-metal batteries

被引:0
|
作者
Wei, Zhuangzhuang [1 ]
Huang, Jun [1 ]
Liao, Zhu [1 ]
Hu, Anyi [1 ]
Zhang, Zhengxi [1 ,4 ]
Orita, Akihiro [2 ]
Saito, Nagahiro [3 ]
Yang, Li [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Showa Denko Mat Co, Tokyo 1006606, Japan
[3] Nagoya Univ, Dept Chem Syst Engn, Nagoya 4648603, Japan
[4] Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
In-situ formation; Nanocrystals; Rigid polymers; Wide operating temperature; Lithium-metal batteries; TRANSPORT; LIQUIDS;
D O I
10.1016/j.ensm.2024.103714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-based solid-state electrolytes with excellent processability and flexibility are ideal candidates for commercialisation in lithium-metal batteries. However, the current polymer-based solid-state electrolytes still have many problems such as low ionic conductivity, limited Li+ + transport number and high interfacial resistance with electrodes. To address the above challenges, a solid-state rigid polymer composite electrolyte with high ionic conductivity (2.8 mS cm- 1 ) has been prepared based on the rigid polymer poly(2, 2 '-disulfonyl-4, '-disulfonyl-4, 4 '- '- benzidine terephthalamide) (PBDT). Locally aligned PBDT-EMImN(CN)2 2 grains are interspersed with in-situ formed interconnected LiFSI to form the structure of the polymer composite electrolyte. The formation of defective LiFSI nanocrystals at grain boundaries inside the polymer electrolyte acts as additional conductive networks providing fast Li+ + transportation (t Li + = 0.59). The flexible region in the electrolyte gives excellent interfacial impedance (32.5 Omega cm2) 2 ) with Li-metal electrode. The Li||Li batteries can be stably cycled for over 1000 cycles at 1 mA cm- 2 (25 degrees C). The assembled Li||LiFePO4 4 batteries exhibit excellent cycling and multiplication performance over a wide operating temperature (from-20 to 60 degrees C). Moreover, this electrolyte material exhibits compatibility with high-voltage cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 batteries. This electrolyte and design strategy is expected to inspire the realization of all-weather practical solid-state lithium-metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Choudhury, Snehashis
    Stalin, Sanjuna
    Vu, Duylinh
    Warren, Alexander
    Deng, Yue
    Biswal, Prayag
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [42] Solid-state polymer electrolytes for high-performance lithium metal batteries
    Snehashis Choudhury
    Sanjuna Stalin
    Duylinh Vu
    Alexander Warren
    Yue Deng
    Prayag Biswal
    Lynden A. Archer
    Nature Communications, 10
  • [43] Fiber-Reinforced Ultrathin Solid Polymer Electrolyte for Solid-State Lithium-Metal Batteries
    Zhang, Yining
    Yu, Jiameng
    Shi, Hongsheng
    Wang, Shuanghong
    Lv, Yinjie
    Zhang, Yue
    Yuan, Qiong
    Liang, Jinjiang
    Gao, Tianyi
    Wei, Ran
    Chen, Xin
    Wang, Luyao
    Yu, Yi
    Liu, Wei
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [44] Solid-state NMR studies on crystalline solid polymer electrolytes and important cathode materials for lithium-ion batteries
    Geng, Fushan
    Peng, Bo
    Yao, Yefeng
    Chen, Qun
    Hu, Bingwen
    ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 100, 2020, 100 : 265 - 308
  • [45] Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries
    Chen, Luyi
    Ding, Kui
    Li, Kang
    Li, Zhongliang
    Zhang, Xueliang
    Zheng, Qifeng
    Cai, Yue-Peng
    Lan, Ya-Qian
    ENERGYCHEM, 2022, 4 (03)
  • [46] Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries
    Hu, Yilin
    Xie, Xiaoxin
    Li, Wei
    Huang, Qiu
    Huang, Hao
    Hao, Shu-Meng
    Fan, Li-Zhen
    Zhou, Weidong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (04) : 1253 - 1277
  • [47] A Review of Polymer-based Solid-State Electrolytes for Lithium-Metal Batteries: Structure, Kinetic, Interface Stability, and Application
    Zhao, Xiaoxue
    Wang, Chao
    Liu, Hong
    Liang, Yuhao
    Fan, Li-Zhen
    BATTERIES & SUPERCAPS, 2023, 6 (04)
  • [48] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Kulkarni, Uddhav
    Cho, Won-Jang
    Cho, Seok-Kyu
    Hong, Jeong-Jin
    Shejale, Kiran P.
    Yi, Gi-Ra
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (02) : 385 - 402
  • [49] Ultra-Thin Lithium Silicide Interlayer for Solid-State Lithium-Metal Batteries
    Sung, Jaekyung
    Kim, So Yeon
    Harutyunyan, Avetik
    Amirmaleki, Maedeh
    Lee, Yoonkwang
    Son, Yeonguk
    Li, Ju
    ADVANCED MATERIALS, 2023, 35 (22)
  • [50] In-situ Polymerization Methods for Polymer-based Solid-State Lithium Batteries
    Sun, Mengjun
    Zeng, Ziqi
    Zhong, Wei
    Han, Zhilong
    Peng, Linfeng
    Cheng, Shijie
    Xie, Jia
    BATTERIES & SUPERCAPS, 2022, 5 (12)