Solid-state rigid polymer composite electrolytes with in-situ formed nano-crystalline lithium ion pathways for lithium-metal batteries

被引:1
作者
Wei, Zhuangzhuang [1 ]
Huang, Jun [1 ]
Liao, Zhu [1 ]
Hu, Anyi [1 ]
Zhang, Zhengxi [1 ,4 ]
Orita, Akihiro [2 ]
Saito, Nagahiro [3 ]
Yang, Li [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Showa Denko Mat Co, Tokyo 1006606, Japan
[3] Nagoya Univ, Dept Chem Syst Engn, Nagoya 4648603, Japan
[4] Shanghai Electrochem Energy Devices Res Ctr, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
In-situ formation; Nanocrystals; Rigid polymers; Wide operating temperature; Lithium-metal batteries; TRANSPORT; LIQUIDS;
D O I
10.1016/j.ensm.2024.103714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-based solid-state electrolytes with excellent processability and flexibility are ideal candidates for commercialisation in lithium-metal batteries. However, the current polymer-based solid-state electrolytes still have many problems such as low ionic conductivity, limited Li+ + transport number and high interfacial resistance with electrodes. To address the above challenges, a solid-state rigid polymer composite electrolyte with high ionic conductivity (2.8 mS cm- 1 ) has been prepared based on the rigid polymer poly(2, 2 '-disulfonyl-4, '-disulfonyl-4, 4 '- '- benzidine terephthalamide) (PBDT). Locally aligned PBDT-EMImN(CN)2 2 grains are interspersed with in-situ formed interconnected LiFSI to form the structure of the polymer composite electrolyte. The formation of defective LiFSI nanocrystals at grain boundaries inside the polymer electrolyte acts as additional conductive networks providing fast Li+ + transportation (t Li + = 0.59). The flexible region in the electrolyte gives excellent interfacial impedance (32.5 Omega cm2) 2 ) with Li-metal electrode. The Li||Li batteries can be stably cycled for over 1000 cycles at 1 mA cm- 2 (25 degrees C). The assembled Li||LiFePO4 4 batteries exhibit excellent cycling and multiplication performance over a wide operating temperature (from-20 to 60 degrees C). Moreover, this electrolyte material exhibits compatibility with high-voltage cathode LiNi 0.6 Mn 0.2 Co 0.2 O 2 batteries. This electrolyte and design strategy is expected to inspire the realization of all-weather practical solid-state lithium-metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook
    Wang, Senhao
    La Monaca, Andrea
    Demopoulos, George P.
    ENERGY ADVANCES, 2025, 4 (01): : 11 - 36
  • [32] Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries
    Lv, Fei
    Wang, Zhuyi
    Shi, Liyi
    Zhu, Jiefang
    Edstrom, Kristina
    Mindemark, Jonas
    Yuan, Shuai
    JOURNAL OF POWER SOURCES, 2019, 441
  • [33] Covalent organic frameworks for solid-state electrolytes of lithium metal batteries
    Gao, Zhihui
    Liu, Qing
    Zhao, Genfu
    Sun, Yongjiang
    Guo, Hong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) : 7497 - 7516
  • [34] Recent Progress in Flame-Retardant Polymer Electrolytes for Solid-State Lithium Metal Batteries
    Liao, Yubin
    Xu, Xijun
    Luo, Xiongwei
    Ji, Shaomin
    Zhao, Jingwei
    Liu, Jun
    Huo, Yanping
    BATTERIES-BASEL, 2023, 9 (09):
  • [35] Fluorine-containing triblock copolymers as solid-state polymer electrolytes for lithium metal batteries
    Sun, Yuxue
    Zhang, Xiaorong
    Ma, Chunhui
    Guo, Nan
    Liu, Yulong
    Liu, Jun
    Xie, Haiming
    JOURNAL OF POWER SOURCES, 2021, 516
  • [36] Synthesis of Fluorine-Doped Lithium Argyrodite Solid Electrolytes for Solid-State Lithium Metal Batteries
    Arnold, William
    Shreyas, Varun
    Li, Yang
    Koralalage, Milinda Kalutara
    Jasinski, Jacek B.
    Thapa, Arjun
    Sumanasekera, Gamini
    Ngo, Anh T.
    Narayanan, Badri
    Wang, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (09) : 11483 - 11492
  • [37] Solid-State Electrolytes for Lithium Metal Batteries: State-of-the-Art and Perspectives
    Huang, Jun
    Li, Chen
    Jiang, Dongkai
    Gao, Jingyi
    Cheng, Lei
    Li, Guocheng
    Luo, Hang
    Xu, Zheng-Long
    Shin, Dong-Myeong
    Wang, Yanming
    Lu, Yingying
    Kim, Yoonseob
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (01)
  • [38] Recent progress on metal-organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering
    Li, Bei
    Wang, Changhong
    Yu, Ruizhi
    Han, Jingquan
    Jiang, Shaohua
    Zhang, Chunmei
    He, Shuijian
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1854 - 1884
  • [39] Practical 4.7 V solid-state 18650 cylindrical lithium metal batteries with in-situ fabricated localized high-concentration polymer electrolytes
    Song, Xingchen
    Zhao, Ruiqi
    Zhu, Jie
    Zhang, Jinping
    Xu, Nuo
    Liu, Jie
    Liu, Yansong
    Zhang, Hongtao
    Ma, Yanfeng
    Li, Chenxi
    Chen, Yongsheng
    NATIONAL SCIENCE REVIEW, 2025, 12 (04)
  • [40] Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries
    Luo, Guangmei
    Yuan, Bing
    Guan, Tianyun
    Cheng, Fangyi
    Zhang, Wangqing
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3028 - 3034