Catalytically Active Materials Visualized by Scanning Photoelectron Spectro-Microscopy

被引:0
作者
Amati, Matteo [1 ]
Yashina, Lada V. [2 ,3 ]
Winkler, Philipp [4 ]
Sparwasser, Kevin [5 ]
Milosz, Zygmunt [1 ]
Rupprechter, Guenther [4 ]
Gregoratti, Luca [1 ]
机构
[1] Elettra Sincrotrone Trieste SCpA, SS14 Km163 5 Area Sci Pk, I-34149 Trieste, Italy
[2] Lomonosov Moscow State Univ, Leninskie Gory 1 Bld 3, Moscow 119991, Russia
[3] NN Semenov Fed Res Ctr Chem Phys, Kosygina St 4, Moscow 119991, Russia
[4] TU Wien, Inst Mat Chem, Getreidemarkt 9, A-1060 Vienna, Austria
[5] Max Planck Inst Eisenforsch GmbH, Microstruct Phys & Alloy Design, D-40237 Dusseldorf, Germany
来源
SURFACES | 2024年 / 7卷 / 03期
基金
奥地利科学基金会;
关键词
heterogeneous catalysis; scanning photoemission microscopy; XPS; ORR; metal particles; METAL-SUPPORT INTERACTIONS; ELECTRON-MICROSCOPY; OXYGEN REDUCTION; PHOTOEMISSION-SPECTROSCOPY; CO2; HYDROGENATION; CARBON; PRESSURE; SURFACE; OXIDATION; CATALYSTS;
D O I
10.3390/surfaces7030028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modern catalysts are complex systems whose performance depends both on space and time domains and, most importantly, on the operational environment. As a direct consequence, understanding their functionalities requires sophisticated techniques and tools for measurement and simulation, addressing the proper spatial and temporal scale and being capable of mimicking the working conditions of every single component, such as catalyst supports, electrodes, electrolytes, as well as of the entire assembly, e.g., in the case of fuel cells or batteries. Scanning photoelectron spectro-microscopy (SPEM) is one of the approaches that allow combining X-ray photoelectron spectroscopy with sub-micron spatial resolution; in particular, the SPEM hosted at the ESCA Microscopy beamline at Elettra has been upgraded to conduct in situ and operando experiments. Three different case studies are presented to illustrate the capabilities of the SPEM in the investigation of catalytic materials in different conditions and processes.
引用
收藏
页码:442 / 459
页数:18
相关论文
共 87 条
[21]   ANOMALOUSLY SLOW-ELECTRON TRANSFER AT ORDERED GRAPHITE-ELECTRODES - INFLUENCE OF ELECTRONIC FACTORS AND REACTIVE SITES [J].
CLINE, KK ;
MCDERMOTT, MT ;
MCCREERY, RL .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (20) :5314-5319
[22]   Role of steps in N2 activation on Ru(0001) [J].
Dahl, S ;
Logadottir, A ;
Egeberg, RC ;
Larsen, JH ;
Chorkendorff, I ;
Törnqvist, E ;
Norskov, JK .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1814-1817
[23]   Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments [J].
Danilovic, Nemanja ;
Subbaraman, Ramachandran ;
Chang, Kee Chul ;
Chang, Seo Hyoung ;
Kang, Yijin ;
Snyder, Joshua ;
Paulikas, Arvydas Paul ;
Strmcnik, Dusan ;
Kim, Yong Tae ;
Myers, Deborah ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (51) :14016-14021
[24]   In situ dynamic study of hydrogen oxidation on rhodium [J].
de Bocarmé, TV ;
Bär, T ;
Kruse, N .
ULTRAMICROSCOPY, 2001, 89 (1-3) :75-82
[25]   A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane - implications in energy-related applications [J].
Dobrota, Ana S. ;
Pasti, Igor A. ;
Mentus, Slavko V. ;
Skorodumova, Natalia V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (12) :8530-8540
[26]   Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra [J].
Dudin, Pavel ;
Lacovig, Paolo ;
Fava, Claudio ;
Nicolini, Eugenio ;
Bianco, Anna ;
Cautero, Giuseppe ;
Barinov, Alexei .
JOURNAL OF SYNCHROTRON RADIATION, 2010, 17 :445-450
[27]   Dynamic interplay between metal nanoparticles and oxide support under redox conditions [J].
Frey, H. ;
Beck, A. ;
Huang, X. ;
van Bokhoven, J. A. ;
Willinger, M. G. .
SCIENCE, 2022, 376 (6596) :982-+
[28]   Metal-oxide interfacial reactions:: Encapsulation of Pd on TiO2 (110) [J].
Fu, Q ;
Wagner, T ;
Olliges, S ;
Carstanjen, HD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02) :944-951
[29]   48-Channel electron detector for photoemission spectroscopy and microscopy [J].
Gregoratti, L ;
Barinov, A ;
Benfatto, E ;
Cautero, G ;
Fava, C ;
Lacovig, P ;
Lonza, D ;
Kiskinova, M ;
Tommasini, R ;
Mähl, S ;
Heichler, W .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (01) :64-68
[30]  
GRIFFITH OH, 1991, ULTRAMICROSCOPY, V36, P1