HaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge

被引:9
作者
Podobnik, Gasper [1 ]
Ibragimov, Bulat [1 ,2 ]
Tappeiner, Elias [3 ]
Lee, Chanwoong [4 ,5 ]
Kim, Jin Sung [4 ,5 ,6 ]
Mesbah, Zacharia [7 ,8 ]
Modzelewski, Romain [7 ,9 ]
Ma, Yihao [10 ]
Yang, Fan [10 ]
Rudecki, Mikoaj [11 ]
Wodzinski, Marek [11 ,12 ]
Peterlin, Primoz [13 ]
Strojan, Primoz [13 ]
Vrtovec, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Trzaska Cesta 25, SI-1000 Ljubljana, Slovenia
[2] Univ Copenhagen, Dept Comp Sci, Univ Pk 1, DK-2100 Copenhagen, Denmark
[3] UMIT Tirol Private Univ Hlth Sci & Hlth Technol, Eduard Wallnofer Zentrum 1, A-6060 Hall In Tirol, Austria
[4] Yonsei Univ, Coll Med, 50 Yonsei Ro, Seoul 03722, South Korea
[5] Yonsei Canc Ctr, Dept RadiationOncol, 50-1 Yonsei Ro, Seoul 03722, South Korea
[6] Oncosoft Inc, 37 Myeongmul Gil, Seoul 03722, South Korea
[7] Henri Becquerel Canc Ctr, 1 Rue Amiens, F-76000 Rouen, France
[8] Siemens Healthineers, 6 Rue Gen Audran,CS20146, F-92412 Courbevoie, France
[9] Litis UR 4108, 684 Ave Univ, F-76800 St Etienne Du Rouvray, France
[10] Guizhou Med Univ, Sch Biol & Engn, 9FW8 2P3 Ankang Ave, Guiyang 561113, Guizhou, Peoples R China
[11] AGH Univ Krakow, Dept Measurement & Electronicsal, Mickiewicza 30, PL-30059 Krakow, Poland
[12] Univ Appl Sci Western Switzerland, Informat Syst Inst, Rue Plaine 2, CH-3960 Sierre, Switzerland
[13] Inst Oncol, Zaloska Cesta 2, Ljubljana 1000, Slovenia
关键词
Computational challenge; Segmentation; Deep learning; Organs-at-risk; Computed tomography; Magnetic resonance; Radiotherapy; Head and neck cancer;
D O I
10.1016/j.radonc.2024.110410
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and purpose: To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge . Materials and methods: The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD 95 ), and statistical ranking was applied for each metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. Results: While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The top-performing team achieved a DSC of 76.9 % and a HD 95 of 3.5 mm. All participating teams utilized architectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network entry-level concatenation of both modalities. Conclusion: This challenge simulated a real-world clinical scenario by providing non-registered MR and CT images with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for future research on this publicly available dataset and on paired multi-modal image segmentation in general.
引用
收藏
页数:8
相关论文
共 63 条
[1]  
Armato S, 2019, MED PHYS, V46, pE485
[2]   Deep learning MRI-only synthetic-CT generation for pelvis, brain and head and neck cancers [J].
Bird, David ;
Speight, Richard ;
Andersson, Sebastian ;
Wingqvist, Jenny ;
Al-Qaisieh, Bashar .
RADIOTHERAPY AND ONCOLOGY, 2024, 191
[3]   MR-Guided Radiotherapy for Head and Neck Cancer: Current Developments, Perspectives, and Challenges [J].
Boeke, Simon ;
Monnich, David ;
van Timmeren, Janita E. ;
Balermpas, Panagiotis .
FRONTIERS IN ONCOLOGY, 2021, 11
[4]   Benefits of automated gross tumor volume segmentation in head and neck cancer using multi-modality information [J].
Bollen, Heleen ;
Willems, Siri ;
Wegge, Marilyn ;
Maes, Frederik ;
Nuyts, Sandra .
RADIOTHERAPY AND ONCOLOGY, 2023, 182
[5]   Prognostic radiomic signature for head and neck cancer: Development and validation on a multi-centric MRI dataset [J].
Bologna, Marco ;
Corino, Valentina ;
Cavalieri, Stefano ;
Calareso, Giuseppina ;
Gazzani, Silvia Eleonora ;
Poli, Tito ;
Ravanelli, Marco ;
Mattavelli, Davide ;
de Graaf, Pim ;
Nauta, Irene ;
Scheckenbach, Kathrin ;
Licitra, Lisa ;
Mainardi, Luca .
RADIOTHERAPY AND ONCOLOGY, 2023, 183
[6]   CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines [J].
Brouwer, Charlotte L. ;
Steenbakkers, Roel J. H. M. ;
Bourhis, Jean ;
Budach, Wilfried ;
Grau, Cai ;
Gregoire, Vincent ;
van Herk, Marcel ;
Lee, Anne ;
Maingon, Philippe ;
Nutting, Chris ;
O'Sullivan, Brian ;
Porceddu, Sandro V. ;
Rosenthal, David I. ;
Sijtsema, Nanna M. ;
Langendijk, Johannes A. .
RADIOTHERAPY AND ONCOLOGY, 2015, 117 (01) :83-90
[7]  
Cardoso M J., 2022, arXiv, DOI 10.48550/arXiv.2211.02701
[8]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[9]   Head and Neck Cancer [J].
Chow, Laura Q. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (01) :60-72
[10]   Transfer learning for auto-segmentation of 17 organs-at-risk in the head and neck: Bridging the gap between institutional and public datasets [J].
Clark, Brett ;
Hardcastle, Nicholas ;
Johnston, Leigh A. ;
Korte, James .
MEDICAL PHYSICS, 2024, 51 (07) :4767-4777