A Bimodal Extension of the Tanh Skew Normal Distribution: Properties and Applications

被引:3
作者
Das, Jondeep [1 ]
Hazarika, Partha Jyoti [1 ]
Chakraborty, Subrata [1 ]
Pathak, Dimpal [1 ]
Hamedani, G. G. [2 ]
Karamikabir, Hamid [3 ]
机构
[1] Dibrugarh Univ, Dept Stat, Dibrugarh, Assam, India
[2] Marquette Univ, Dept Math & Stat Sci, Milwaukee, WI USA
[3] Persian Gulf Univ, Fac Intelligent Syst Engn & Data Sci, Dept Stat, Bushehr, Iran
关键词
Skewness; Skew Normal Distribution; Simulation; Bi-modality; AIC; LOGISTIC DISTRIBUTION;
D O I
10.18187/pjsor.v20i3.4563
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article introduces a novel family of skew distributions namely bimodal Tanh skew normal (BTSN) distributions, which incorporates a new skew function with the help of hyperbolic tangent function. This new distribution is designed to accommodate data sets with two modes. Besides, the article presents various essential mathematical properties, such as moments, moment generating function, characteristic function, mean deviation, characterizations and the method for maximum likelihood estimation of this distribution. A simulation study is also conducted using Metropolis-Hastings algorithm to examine the behavior of the obtained parameters. Furthermore, the practical utility of this new distribution is demonstrated through a real life application involving a specific data set. To assess the suitability of the BTSN distribution, the article employs Akaike information criterion (AIC) and Bayesian information criterion (BIC). Finally, a likelihood ratio test is conducted to distinguish between the new model and the existing competing models.
引用
收藏
页码:533 / 551
页数:19
相关论文
共 36 条
[1]   Skewed multivariate models related to hidden truncation and/or selective reporting [J].
Arnold B.C. ;
Beaver R.J. .
Test, 2002, 11 (1) :7-54
[2]   On the skew Laplace distribution [J].
Aryal, Gokarna .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2005, 26 (01) :205-217
[3]  
AZZALINI A, 1985, SCAND J STAT, V12, P171
[4]   A new skew-bimodal distribution with applications [J].
Braga, Altemir da Silva ;
Cordeiro, Gauss M. ;
Ortega, Edwin M. M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (12) :2950-2968
[5]  
Chakraborty S, 2012, PAK J STAT, V28, P513
[6]   A New Flexible Alpha Skew Normal Distribution [J].
Das, Jondeep ;
Pathak, Dimpal ;
Hazarika, Partha Jyoti ;
Chakraborty, Subrata ;
Hamedani, G. G. .
JOURNAL OF THE INDIAN SOCIETY FOR PROBABILITY AND STATISTICS, 2023, 24 (02) :485-507
[7]   Modeling of soybean yield using symmetric, asymmetric and bimodal distributions: implications for crop insurance [J].
Duarte, Gislaine V. ;
Braga, Altemir ;
Miquelluti, Daniel L. ;
Ozaki, Vitor A. .
JOURNAL OF APPLIED STATISTICS, 2018, 45 (11) :1920-1937
[8]   On Properties of the Bimodal Skew-Normal Distribution and an Application [J].
Elal-Olivero, David ;
Olivares-Pacheco, Juan F. ;
Venegas, Osvaldo ;
Bolfarine, Heleno ;
Gomez, Hector W. .
MATHEMATICS, 2020, 8 (05)
[9]  
Elal-Olivero David, 2010, Proyecciones (Antofagasta), V29, P224
[10]  
Esmaeili H, 2020, Statistics Optimization & Information Computing, V8, P304, DOI [10.19139/soic-2310-5070-706, 10.19139/soic-2310-5070-706, DOI 10.19139/SOIC-2310-5070-706]