Parameter Estimation in Biochemical Models Using Moment Approximations

被引:1
作者
Hossain, Kannon [1 ]
Sidje, Roger B. [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023 | 2023年
关键词
parameter estimation; method of moments; chemical master equation; stochastic biochemical models; system biology; INFERENCE;
D O I
10.1109/CSCI62032.2023.00098
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biochemical processes exhibiting stochastic fluctuations can be mathematically modeled using the chemical master equation (CME). Because of the natural randomness of the molecular interactions, it is important to infer the model parameters from experimental or synthetic data to ensure that the biochemical process being modeled accurately represents the intended system. Methods for estimating model parameters that require solving the CME are computationally expensive due to its large and potentially infinite size. By contrast, in moment-based approximations, the objective function can be stated as a least squares estimator that avoids solving the CME, thus becoming significantly faster to optimize. We demonstrate the usefulness of this approach by applying it to two case studies from systems biology, also showing that the estimation is accurate with very low relative errors.
引用
收藏
页码:551 / 557
页数:7
相关论文
共 28 条
[1]   A general moment expansion method for stochastic kinetic models [J].
Ale, Angelique ;
Kirk, Paul ;
Stump, Michael P. H. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (17)
[2]   Moment-Based Parameter Estimation for Stochastic Reaction Networks in Equilibrium [J].
Backenkohler, Michael ;
Bortolussi, Luca ;
Wolf, Verena .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (04) :1180-1192
[3]  
BARTHOLOMAY ANTHONY F., 1958, BULL MATH BIOPHYS, V20, P97, DOI 10.1007/BF02477571
[4]   Bayesian inference for a discretely observed stochastic kinetic model [J].
Boys, R. J. ;
Wilkinson, D. J. ;
Kirkwood, T. B. L. .
STATISTICS AND COMPUTING, 2008, 18 (02) :125-135
[5]   Accelerated maximum likelihood parameter estimation for stochastic biochemical systems [J].
Daigle, Bernie J., Jr. ;
Roh, Min K. ;
Petzold, Linda R. ;
Niemi, Jarad .
BMC BIOINFORMATICS, 2012, 13
[6]   An application of the Krylov-FSP-SSA method to parameter fitting with maximum likelihood [J].
Dinh, Khanh N. ;
Sidje, Roger B. .
PHYSICAL BIOLOGY, 2017, 14 (06)
[7]   An adaptive solution to the chemical master equation using quantized tensor trains with sliding windows [J].
Dinh, Trang ;
Sidje, Roger B. .
PHYSICAL BIOLOGY, 2020, 17 (06)
[8]   Computing the moments of high dimensional solutions of the master equation [J].
Engblom, Stefan .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (02) :498-515
[9]   Moment-closure approximations for mass-action models [J].
Gillespie, C. S. .
IET SYSTEMS BIOLOGY, 2009, 3 (01) :52-58
[10]   EXACT STOCHASTIC SIMULATION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (25) :2340-2361