Construction of flexible asymmetric composite polymer electrolytes for high-voltage lithium metal batteries with superior performance

被引:15
作者
Chai, Yan [1 ]
Ning, De [2 ]
Zhou, Dong [3 ]
Gao, Jiansheng [1 ]
Ni, Jialun [1 ]
Zhang, Gaoyuan [1 ]
Gao, Rui [1 ]
Wu, Wei [2 ]
Wang, Jun [4 ]
Li, Yongli [1 ]
机构
[1] North China Elect Power Univ, Inst Clean Energy Technol, Beijing 102206, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr Photon Informat & Energy Mat, Shenzhen 518055, Peoples R China
[3] Sun Yat Sen Univ, Sch Adv Energy, Shenzhen Campus, Shenzhen 518107, Peoples R China
[4] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal batteries; Asymmetric composite solid electrolyte; Electrospinning technique; In-situ polymerization; Lithium utilization; ION; CHEMISTRY; ENERGY;
D O I
10.1016/j.nanoen.2024.110160
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The primary obstacle hindering the application of composite solid electrolytes lies in the varying demands posed by the Li metal anode and the cathode, which needs to be capable of suppressing dendrite growth and resisting high voltage simultaneously. In this work, a new asymmetric composite solid-state electrolyte prepared via electrospinning and in-situ polymerization is proposed to address these shortcomings. In this bilayer architecture, polyacrylonitrile (PAN) layer of high-voltage tolerance, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) layer of robust mechanical strength and good compatibility towards Li-anode are constructed, and metal-organic-frameworks (MOFs) are pre-embedded within both layers. The unique design provides a wide electrochemical stability window meanwhile ensures uniform lithium deposition. Remarkably, it exhibits a superior lithium utilization of 41 mAh cm- 2 using a lean polymer electrolyte precursor and a high critical current density of 2.2 mA cm- 2 with a thickness of 40 mu m. Beneficial from the formation of a self-adjustable gradient solid electrolyte interphase in the Li/PVDF-HFP interface, the asymmetric electrolyte endows Li||Li and Li|| NCM811 cells with excellent cycling stability. Moreover, the solid-state pouch cell exhibits reliable operation under extreme conditions. This work provides inspiration for the design and fabrication of composite solid electrolytes for next-generation high-voltage Li metal batteries.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]   Are Polymer-Based Electrolytes Ready for High-Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance [J].
Cabanero Martinez, Maria Angeles ;
Boaretto, Nicola ;
Naylor, Andrew J. ;
Alcaide, Francisco ;
Salian, Girish D. ;
Palombardini, Flavia ;
Ayerbe, Elixabete ;
Borras, Mateu ;
Casas-Cabanas, Montserrat .
ADVANCED ENERGY MATERIALS, 2022, 12 (32)
[4]   Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes [J].
Cheng, Xin-Bing ;
Zhao, Chen-Zi ;
Yao, Yu-Xing ;
Liu, He ;
Zhang, Qiang .
CHEM, 2019, 5 (01) :74-96
[5]   Designing In-Situ-Formed Interphases Enables Highly Reversible Cobalt-Free LiNiO2 Cathode for Li-ion and Li-metal Batteries [J].
Deng, Tao ;
Fang, Xiulin ;
Cao, Longsheng ;
Chen, Ji ;
Hou, Singyuk ;
Ji, Xiao ;
Chen, Long ;
Li, Shuang ;
Zhou, Xiuquan ;
Hu, Enyuan ;
Su, Dong ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOULE, 2019, 3 (10) :2550-2564
[6]   Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J].
Diederichsen, Kyle M. ;
McShane, Eric J. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2017, 2 (11) :2563-2575
[7]   Tandem Design of Functional Separators for Li Metal Batteries with Long-Term Stability and High-Rate Capability [J].
Ding, Luoyi ;
Yue, Xinyang ;
Chen, Yuanmao ;
Wang, Zhiyong ;
Liu, Jijiang ;
Shi, Zhangqin ;
Liang, Zheng .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
[8]   Reaction Mechanism Optimization of Solid-State Li-S Batteries with a PEO-Based Electrolyte [J].
Fang, Ruyi ;
Xu, Henghui ;
Xu, Biyi ;
Li, Xinyu ;
Li, Yutao ;
Goodenough, John B. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
[9]   In-situ polymerized solid-state electrolytes with stable cycling for Li/ LiCoO2 batteries [J].
Geng, Zhen ;
Huang, Yuli ;
Sun, Guochen ;
Chen, Rusong ;
Cao, Wenzhuo ;
Zheng, Jieyun ;
Li, Hong .
NANO ENERGY, 2022, 91
[10]   Lithium metal batteries capable of stable operation at elevated temperature [J].
Geng, Zhen ;
Lu, Jiaze ;
Li, Quan ;
Qiu, Jiliang ;
Wang, Yi ;
Peng, Jiayue ;
Huang, Jie ;
Li, Wenjun ;
Yu, Xiqian ;
Li, Hong .
ENERGY STORAGE MATERIALS, 2019, 23 :646-652