D-optimal designs for a multidimensional second-degree polynomial model with no intercept

被引:2
作者
Shpilev, P. V. [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, 28 Univ Ave, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
Multivariate regression; Multidimensional polynomial model; D-optimal designs; REGRESSION MODELS;
D O I
10.1016/j.spl.2024.110228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper investigates the problem of constructing D-optimal designs for the multidimensional second-degree polynomial model without an intercept term. On a hyperparallelepiped of the given dimensionality and symmetric with respect to the origin, D-optimal designs are found in explicit analytical form.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Nonlinear Regression Models and Applications in Agricultural Research [J].
Archontoulis, Sotirios V. ;
Miguez, Fernando E. .
AGRONOMY JOURNAL, 2015, 107 (02) :786-798
[2]  
Atkinson A.C., 2007, OPTIMUM EXPT DESIGNS
[3]   Exact D-optimal designs for polynomial regression without intercept [J].
Chang, FC .
STATISTICS & PROBABILITY LETTERS, 1999, 44 (02) :131-136
[4]   APPROXIMATE OPTIMAL DESIGNS FOR MULTIVARIATE POLYNOMIAL REGRESSION [J].
De Castro, Yohann ;
Gamboa, Fabrice ;
Henrion, Didier ;
Hesst, Roxana ;
Lasserre, Jean-Bernard .
ANNALS OF STATISTICS, 2019, 47 (01) :127-155
[5]   Optimal designs for three-dimensional shape analysis with spherical harmonic descriptors [J].
Dette, H ;
Melas, VB ;
Pepelyshev, A .
ANNALS OF STATISTICS, 2005, 33 (06) :2758-2788
[6]   A note on optimal designs for estimating the slope of a polynomial regression [J].
Dette, Holger ;
Melas, Viatcheslav B. ;
Shpilev, Petr .
STATISTICS & PROBABILITY LETTERS, 2021, 170
[7]   Optimal designs for estimating individual coefficients in polynomial regression with no intercept [J].
Dette, Holger ;
Melas, Viatcheslav B. ;
Shpilev, Petr .
STATISTICS & PROBABILITY LETTERS, 2020, 158
[8]   Some explicit solutions of c-optimal design problems for polynomial regression with no intercept [J].
Dette, Holger ;
Melas, Viatcheslav B. ;
Shpilev, Petr .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (01) :61-82
[9]  
Ermakov S.M., 1983, Mathematical Theory of Experimental Design
[10]  
Fedorov V.V., 1972, THEORY OPTIMAL EXPT