A new criterion for p-nilpotency and solvability of finite groups by coprime actions

被引:1
作者
Zhang, Boru [1 ]
Lu, Jiakuan [1 ]
Meng, Wei [2 ,3 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, Ctr Appl Math Guangxi, Guilin, Guangxi, Peoples R China
[2] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin, Guangxi, Peoples R China
[3] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Coprime action; p-nilpotent; S-semipermutable; Soluble group; MINIMAL SUBGROUPS; SUPERSOLVABILITY;
D O I
10.1080/00927872.2024.2395990
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G and A be finite groups of relative coprime orders and A acts on G via automorphisms. In this paper, we investigate the p-nilpotency and solvability of finite groups in which every maximal A-invariant subgroup of a Sylow p-subgroup of G for some prime p is S-semipermutable.
引用
收藏
页码:994 / 1003
页数:10
相关论文
共 21 条
[1]   A note on a result of Guo and Isaacs about p-supersolubility of finite groups [J].
Ballester-Bolinches, Adolfo ;
Esteban-Romero, Ramon ;
Qiao, ShouHong .
ARCHIV DER MATHEMATIK, 2016, 106 (06) :501-506
[2]   c-Normality and coprime action in finite groups [J].
Beltran, A. ;
Shao, C. .
ACTA MATHEMATICA HUNGARICA, 2023, 171 (1) :39-52
[3]   Restrictions on maximal invariant subgroups implying solvability of finite groups [J].
Beltran, Antonio ;
Shao, Changguo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) :357-366
[4]   p-Supersolvability and actions on p-groups stabilizing certain subgroups [J].
Berkovich, Yakov ;
Isaacs, I. M. .
JOURNAL OF ALGEBRA, 2014, 414 :82-94
[5]  
Chen Z., 1998, J. Math. China, V18, P290
[6]  
Chen Z., 1989, Chinese Sci. Bull, V34, P1691
[7]  
Deskins W., 1959, Proc. Sympos. PureMath, V1, P100
[8]   Conditions on p-subgroups implying p-supersolvability [J].
Guo, Xiuyun ;
Zhang, Boru .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
[9]   On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups [J].
Guo, XY ;
Shum, KP .
ARCHIV DER MATHEMATIK, 2003, 80 (06) :561-569
[10]  
Huppert B., 1967, GRUNDLEHREN MATH WIS, V134, pxii+793