Fast Monte Carlo dose calculation in proton therapy

被引:3
作者
Holmes, Jason [1 ]
Feng, Hongying [1 ,2 ,3 ]
Zhang, Lian [1 ]
Fix, Michael K. [4 ,5 ,6 ]
Jiang, Steve B. [7 ,8 ]
Liu, Wei [1 ]
机构
[1] Dept Radiat Oncol, Mayo Clin, Phoenix, AZ 85054 USA
[2] China Three Gorges Univ, Coll Mech & Power Engn, Yichang 443002, Hubei, Peoples R China
[3] Guangzhou Concord Canc Ctr, Guangzhou, Peoples R China
[4] Bern Univ Hosp, Div Med Radiat Phys, Inselspital, Bern, Switzerland
[5] Bern Univ Hosp, Dept Radiat Oncol, Inselspital, Bern, Switzerland
[6] Univ Bern, Bern, Switzerland
[7] Univ Texas Southwestern Med Ctr, Med Artificial Intelligence & Automat Lab, Dallas, TX 75390 USA
[8] Univ Texas Southwestern Med Ctr, Dept Radiat Oncol, Dallas, TX 75390 USA
关键词
Monte Carlo; adaptive radiotherapy; dose calculation; proton therapy; INTENSITY-MODULATED PROTON; LINEAR-ENERGY-TRANSFER; TRACK-REPEATING ALGORITHM; ROBUST OPTIMIZATION; RESPIRATORY MOTION; LUNG-CANCER; TREATMENT UNCERTAINTIES; ESOPHAGEAL-CARCINOMA; RANGE UNCERTAINTIES; GPU IMPLEMENTATION;
D O I
10.1088/1361-6560/ad67a7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This article examines the critical role of fast Monte Carlo (MC) dose calculations in advancing proton therapy techniques, particularly in the context of increasing treatment customization and precision. As adaptive radiotherapy and other patient-specific approaches evolve, the need for accurate and precise dose calculations, essential for techniques like proton-based stereotactic radiosurgery, becomes more prominent. These calculations, however, are time-intensive, with the treatment planning/optimization process constrained by the achievable speed of dose computations. Thus, enhancing the speed of MC methods is vital, as it not only facilitates the implementation of novel treatment modalities but also leads to more optimal treatment plans. Today, the state-of-the-art in MC dose calculation speeds is 106-107 protons per second. This review highlights the latest advancements in fast MC dose calculations that have led to such speeds, including emerging artificial intelligence-based techniques, and discusses their application in both current and emerging proton therapy strategies.
引用
收藏
页数:17
相关论文
共 176 条
[1]  
Agostinelli S., 2003, Nucl. Instrum. Methods Phys. Res., Sect. A, V506, P250, DOI DOI 10.1016/S0168-9002(03)01368-8
[2]  
An Y, 2017, MED PHYS, V44, P28, DOI [10.1002/mp.12001, 10.1002/mp.12610]
[3]   Nucleon-nucleon elastic scattering to 3 GeV [J].
Arndt, RA ;
Strakovsky, II ;
Workman, RL .
PHYSICAL REVIEW C, 2000, 62 (03) :16
[4]   Verification of the dose distributions with GEANT4 simulation for proton therapy [J].
Aso, T ;
Kimura, A ;
Tanaka, S ;
Yoshida, H ;
Kanematsu, N ;
Sasaki, T ;
Akagi, T .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (04) :896-901
[5]   Stereotactical fields applied in proton spot scanning mode with range shifter and collimating aperture [J].
Baeumer, C. ;
Fuentes, C. ;
Janson, M. ;
Matic, A. ;
Timmermann, B. ;
Wulff, J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (15)
[6]   Deep dose plugin: towards real-time Monte Carlo dose calculation through a deep learning-based denoising algorithm [J].
Bai, Ti ;
Wang, Biling ;
Nguyen, Dan ;
Jiang, Steve .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02)
[7]   Robust optimization to reduce the impact of biological effect variation from physical uncertainties in intensity-modulated proton therapy [J].
Bai, Xuemin ;
Lim, Gino ;
Grosshans, David ;
Mohan, Radhe ;
Cao, Wenhua .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (02)
[8]   The FLUKA Code: An Accurate Simulation Tool For Particle Therapy [J].
Battistoni, Giuseppe ;
Bauer, Julia ;
Boehlen, Till T. ;
Cerutti, Francesco ;
Chin, Mary P. W. ;
Augusto, Ricardo Dos Santos ;
Ferrari, Alfredo ;
Ortega, Pablo G. ;
Kozlowska, Wioletta ;
Magro, Giuseppe ;
Mairani, Andrea ;
Parodi, Katia ;
Sala, Paola R. ;
Schoofs, Philippe ;
Tessonnier, Thomas ;
Vlachoudis, Vasilis .
FRONTIERS IN ONCOLOGY, 2016, 6
[9]  
Berger M J., 1963, Statistical Physics, Vvol 1
[10]  
Berger M. J., 1999, Computer programs for calculating stopping-power and range tables for electrons, protons and helium ions