Carbon dioxide electrochemical reduction by copper nanoparticles/ionic liquid-based catalytic inks

被引:1
作者
Gazzano, Valeria [1 ,2 ]
Mardones-Herrera, Elias [1 ,2 ]
Saez-Pizarro, Natalia [2 ]
Armijo, Francisco [1 ,2 ]
Martinez-Rojas, Francisco [1 ,2 ]
Ruiz-Leon, Domingo [3 ]
Honores, Jessica [1 ,2 ]
Isaacs, Mauricio [1 ,2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Quim & Farm, Dept Quim Inorgan, Santiago, Chile
[2] Pontificia Univ Catolica Chile, Millennium Inst Green Ammonia Energy Vector MIGA, Santiago, Chile
[3] Univ Santiago Chile, Fac Quim & Biol, Dept Quim Mat, Santiago, Chile
来源
FRONTIERS IN ENVIRONMENTAL CHEMISTRY | 2024年 / 5卷
关键词
electrochemical CO2 reduction; ionic liquids; copper nanoparticles; catalytic inks; CO2; conversion; IONIC LIQUIDS; CO2; ELECTROREDUCTION; ELECTROCATALYTIC REDUCTION; SOLUBILITY; INSIGHTS; ELECTRODES; CONVERSION; OXIDE; ANION; TRANSFORMATION;
D O I
10.3389/fenvc.2024.1447014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of copper nanoparticle (CuNP)-based catalysts for the electrochemical reduction of carbon dioxide (ECO2-R) offers a promising approach to enhance its transformation into other industrially significant compounds. This study reports ECO2-R at -1.3 V vs RHE using CuNPs and catalytic inks composed of CuNPs and ionic liquids (ILs), observing significant differences in the selectivity of each catalyst. Specifically, CuNPs alone show a preference for producing ethylene and aqueous products, such as formic acid, ethanol, and formaldehyde. In contrast, the addition of ILs to the catalytic system redirects selectivity toward gaseous products, with methane being the main product. These findings highlight the potential to optimize catalyst composition to tailor the selectivity of CO2 conversion processes. ILs modify the catalytic environment and influence reaction pathways, enabling the selection of specific products.
引用
收藏
页数:18
相关论文
共 107 条
[31]   Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems [J].
Haeder, Donat-P. ;
Barnes, Paul W. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 682 (239-246) :239-246
[32]   Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques [J].
Handoko, Albertus D. ;
Wei, Fengxia ;
Jenndy ;
Yeo, Boon Siang ;
Seh, Zhi Wei .
NATURE CATALYSIS, 2018, 1 (12) :922-934
[33]   Nanoparticles in ionic liquids: interactions and organization [J].
He, Zhiqi ;
Alexandridis, Paschalis .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (28) :18238-18261
[34]   Vibrational spectra of imidazolium tetrafluoroborate ionic liquids [J].
Heimer, NE ;
Del Sesto, RE ;
Meng, ZZ ;
Wilkes, JS ;
Carper, WR .
JOURNAL OF MOLECULAR LIQUIDS, 2006, 124 (1-3) :84-95
[35]   Ionic liquid structure:: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim] [BF4]) [J].
Holomb, R. ;
Martinelli, A. ;
Albinsson, I. ;
Lassegues, J. C. ;
Johansson, P. ;
Jacobsson, P. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (07) :793-805
[36]   Carbon neutral electrochemical conversion of carbon dioxide mediated by [Mn+(cyclam)Cln] (M = Ni2+ and Co3+) on mercury free electrodes and ionic liquids as reaction media [J].
Honores, J. ;
Quezada, D. ;
Garcia, M. ;
Calfuman, K. ;
Muena, J. P. ;
Aguirre, M. J. ;
Arevalo, M. C. ;
Isaacs, M. .
GREEN CHEMISTRY, 2017, 19 (04) :1155-1162
[37]   Synthesis of Cyclic Carbonates from CO2 and Epoxide Catalyzed by Co, Ni and Cu Complexes in Ionic Liquids [J].
Honores, Jessica ;
Quezada, Diego ;
Chacon, Gustavo ;
Martinez-Ferrate, Oriol ;
Isaacs, Mauricio .
CATALYSIS LETTERS, 2019, 149 (07) :1825-1832
[38]   FORMATION OF HYDROCARBONS IN THE ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE AT A COPPER ELECTRODE IN AQUEOUS-SOLUTION [J].
HORI, Y ;
MURATA, A ;
TAKAHASHI, R .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1989, 85 :2309-2326
[39]   Structural Dependence and Spectroscopic Evidence of Methane Dissolution in Ionic Liquids [J].
Huang, Tingyu ;
Yan, Peifang ;
Xu, Zhanwei ;
Liu, Xiumei ;
Xin, Qin ;
Liu, Haitao ;
Zhang, Z. Conrad .
JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (22) :6007-6016
[40]  
Isaacs M., 2018, Encyclopedia of interfacial chemistry: surface science and electrochemistry, P401, DOI [10.1016/B978-0-12-409547-2.13350-5, DOI 10.1016/B978-0-12-409547-2.13350-5]