Deep learning-based material decomposition of iodine and calcium in mobile photon counting detector CT
被引:0
|
作者:
Han, Kwanhee
论文数: 0引用数: 0
h-index: 0
机构:
Samsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South Korea
Sungkyunkwan Univ, Dept Digital Media & Commun Engn, Suwon, Gyeonggi Do, South KoreaSamsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South Korea
Han, Kwanhee
[1
,2
]
Ryu, Chang Ho
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Artificial Intelligence, Suwon, Gyeonggi Do, South KoreaSamsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South Korea
Ryu, Chang Ho
[3
]
Lee, Chang-Lae
论文数: 0引用数: 0
h-index: 0
机构:
Samsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South KoreaSamsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South Korea
Lee, Chang-Lae
[1
]
Han, Tae Hee
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Semicond Syst Engn, Suwon, Gyeonggi Do, South KoreaSamsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South Korea
Han, Tae Hee
[4
]
机构:
[1] Samsung Elect, Hlth & Med Equipment Business Unit, Suwon, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, Dept Digital Media & Commun Engn, Suwon, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, Dept Artificial Intelligence, Suwon, Gyeonggi Do, South Korea
[4] Sungkyunkwan Univ, Dept Semicond Syst Engn, Suwon, Gyeonggi Do, South Korea
来源:
PLOS ONE
|
2024年
/
19卷
/
07期
基金:
新加坡国家研究基金会;
关键词:
DUAL-ENERGY;
COMPUTED-TOMOGRAPHY;
CONTRAST;
D O I:
10.1371/journal.pone.0306627
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Photon-counting detector (PCD)-based computed tomography (CT) offers several advantages over conventional energy-integrating detector-based CT. Among them, the ability to discriminate energy exhibits significant potential for clinical applications because it provides material-specific information. That is, material decomposition (MD) can be achieved through energy discrimination. In this study, deep learning-based material decomposition was performed using live animal data. We propose MD-Unet, which is a deep learning strategy for material decomposition based on an Unet architecture trained with data from three energy bins. To mitigate the data insufficiency, we developed a pretrained model incorporating various simulation data forms and augmentation strategies. Incorporating these approaches into model training results in enhanced precision in material decomposition, thereby enabling the identification of distinct materials at individual pixel locations. The trained network was applied to the acquired animal data to evaluate material decomposition results. Compared with conventional methods, the newly generated MD-Unet demonstrated more accurate material decomposition imaging. Moreover, the network demonstrated an improved material decomposition ability and significantly reduced noise. In addition, they can potentially offer an enhancement level similar to that of a typical contrast agent. This implies that it can acquire images of the same quality with fewer contrast agents administered to patients, thereby demonstrating its significant clinical value.
机构:
AlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, SwedenAlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden
Yveborg, Moa
Danielsson, Mats
论文数: 0引用数: 0
h-index: 0
机构:
AlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, SwedenAlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden
Danielsson, Mats
Bornefalk, Hans
论文数: 0引用数: 0
h-index: 0
机构:
AlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, SwedenAlbaNova Univ Ctr, Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden
机构:
Univ Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Univ Wisconsin, Carbone Canc Ctr, Madison, WI USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Pickhardt, Perry J.
Lubner, Meghan G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Lubner, Meghan G.
Toia, Giuseppe V.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Univ Wisconsina, Dept Med Phys, Madison, WI USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Toia, Giuseppe V.
Bujila, Robert
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, Waukesha, WI USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Bujila, Robert
Yin, Zhye
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, Niskayuna, NY USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Yin, Zhye
Slavic, Scott
论文数: 0引用数: 0
h-index: 0
机构:
GE Healthcare, Waukesha, WI USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Slavic, Scott
Szczykutowicz, Timothy P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA
Univ Wisconsina, Dept Med Phys, Madison, WI USA
Univ Wisconsina, Dept Biomed Engn, Madison, WI USAUniv Wisconsina, Dept Radiol, 1111 Highland Ave, Madison, WI 53705 USA