Reinforcing membranes with subgaskets in proton exchange membrane water electrolysis: A model-based analysis

被引:0
作者
Kink, Julian [1 ,2 ]
Suermann, Michel [1 ]
Ise, Martin [1 ]
Bensmann, Boris [2 ]
Junker, Philipp [3 ]
Hanke-Rauschenbach, Richard [2 ]
机构
[1] Siemens Energy Global GmbH & Co KG, Schuckertstr 2, D-91058 Erlangen, Germany
[2] Leibniz Univ Hannover, Inst Elect Power Syst, Appelstr 9A, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Inst Continuum Mech, Univ 1, D-30823 Hannover, Germany
关键词
Proton exchange membrane water electrolysis; Membrane; Subgasket; Structural mechanics investigation; FUEL-CELLS;
D O I
10.1016/j.jpowsour.2024.234987
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ensuring the long-term mechanical durability of perfluorosulfonic acid membranes in proton exchange membrane water electrolysis (PEMWE) is essential for long lifetimes. This study investigates the potential of reinforcing the membrane by incorporating a subgasket layer outside the active area. Thus, experimental tensile measurements with the subgasket material and with the subgasket-membrane composite are conducted to characterize their mechanical properties. The obtained data are used to identify suitable material models and parameterize them by applying a tensile test simulation based on the finite element method. By integrating subgaskets in a structural mechanics PEMWE cell model, the impact of the reinforcement on the membrane stability was investigated. The results indicate that even thin layers of subgaskets stabilize the membrane at the gap interface between the cell frame and the porous transport layer. The level of stabilization is further enhanced when using thicker subgaskets that cover the entire gap. However, one-sided subgaskets exhibit reduced mechanical stabilization. Furthermore, membrane buckling due to an increased gap size can be prevented using a subgasket up to a maximum gap size of 0.45 mm.
引用
收藏
页数:12
相关论文
共 31 条
  • [1] [Anonymous], 2023, COMSOL Multiphysics Reference Manual
  • [2] [Anonymous], 2022, COMSOL MULTIPHYSICS
  • [3] Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance
    Bernt, Maximilian
    Gasteiger, Hubert A.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) : F3179 - F3189
  • [4] Bhaskar S., 2005, Patent No. [20050271929A1, 20050271929]
  • [5] Bhaskar S., 2006, Patent No. [6861173B2, 6861173]
  • [6] In-situ estimation of water transfer parameters in a proton exchange membrane fuel cell
    Bligny, Remi
    Schmitt, Tobias
    Dillet, Jerome
    Xu, Feina
    Didierjean, Sophie
    Hanauer, Matthias
    Sauter, Ulrich
    Maranzana, Gael
    [J]. JOURNAL OF POWER SOURCES, 2023, 560
  • [7] 4D imaging of chemo-mechanical membrane degradation in polymer electrolyte fuel cells-Part 1: Understanding and evading edge failures
    Chen, Yixuan
    Singh, Yadvinder
    Ramani, Dilip
    Orfino, Francesco P.
    Dutta, Monica
    Kjeang, Erik
    [J]. JOURNAL OF POWER SOURCES, 2022, 520
  • [8] DIN Deutsches Institut fur Normung e.V, 2019, ISO 527-3:2018
  • [9] DIN Deutsches Institut fur Normung e.V, 2019, Deutsche Fassung EN ISO 527-1:2019
  • [10] DIN Deutsches Institut fur Normung e.V, 2009, Deutsche Fassung EN 1465:200983.180(1465)