Exploring equilibrium conditions in liquid metal dealloying of powders by in situ synchrotron X-ray diffraction

被引:3
作者
Lesage, Louis [1 ,2 ,3 ]
Le Bourlot, Christophe [1 ]
Maire, Eric [1 ]
Wada, Takeshi [4 ]
Kato, Hidemi [3 ,4 ]
Ludwig, Wolfgang [1 ,5 ]
Mary, Nicolas [1 ,3 ]
Geslin, Pierre-Antoine [1 ]
机构
[1] Univ Claude Bernard Lyon 1, CNRS, UMR 5510, INSA Lyon,MATEIS, F-69621 Villeurbanne, France
[2] Tohoku Univ, Grad Sch Engn, Dept Mat & Sci, Sendai 9808579, Japan
[3] Tohoku Univ, Univ Lyon, Univ Claude Bernard Lyon 1, CNRS,INSA Lyon,Cent Lyon,ELyTMaX IRL3757, Sendai 9808577, Japan
[4] Tohoku Univ, Inst Mat Res, Sendai 9808577, Japan
[5] ESRF The European Synchrotron, F-38043 Grenoble, France
关键词
Dealloying; In situ X-ray diffraction; Synchrotron; Rietveld analysis; Thermodynamic equilibria; POROUS STRUCTURE; FE-NI; EVOLUTION; MICROSTRUCTURE; COMPOSITES; IRON; MELT;
D O I
10.1016/j.mtla.2024.102177
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Liquid metal dealloying is a recently developed method to elaborate micro and nano-porous materials. It consists of the selective dissolution of an alloying element from a precursor alloy by immersing it in a liquid metal bath. In this paper, we monitor the dealloying reaction of Invar (Fe65Ni35) 65 Ni 35 ) powders in liquid Mg using in situ synchrotron X-ray diffraction. Rietveld refinement of the diffraction spectra enables quantifying the evolution of different crystalline phases throughout the process, thereby gaining new insights into the kinetics, phase equilibria, and the role of intermetallics on the reaction. These results are systematically compared to post mortem observations of dealloyed samples, showing a good agreement between both techniques. In particular, we show that adjusting the thermodynamic conditions of the reaction (temperature, FeNi/Mg ratio) enables to tailor the microstructure of the dealloyed powders, by modifying the dealloyed fraction to achieve core-shell structures, and altering the composition of ligaments.
引用
收藏
页数:12
相关论文
共 56 条
[1]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[2]  
[Anonymous], 2024, Thermo-Calc Software TCAL8/Al-alloys Database version 8.2
[3]   Cold spraying - A materials perspective [J].
Assadi, H. ;
Kreye, H. ;
Gaertner, F. ;
Klassen, T. .
ACTA MATERIALIA, 2016, 116 :382-407
[4]  
Chateigner D, 2013, Combined Analysis
[5]   Effect of Ag-Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation [J].
Chen-Wiegart, Yu-chen Karen ;
Wang, Steve ;
McNulty, Ian ;
Dunand, David C. .
ACTA MATERIALIA, 2013, 61 (15) :5561-5570
[6]   In situ imaging of dealloying during nanoporous gold formation by transmission X-ray microscopy [J].
Chen-Wiegart, Yu-chen Karen ;
Wang, Steve ;
Lee, Wah-Keat ;
McNulty, Ian ;
Voorhees, Peter W. ;
Dunand, David C. .
ACTA MATERIALIA, 2013, 61 (04) :1118-1125
[7]   A powder metallurgy approach to liquid metal dealloying with applications in additive manufacturing [J].
Chuang, A. ;
Baris, J. ;
Ott, C. ;
McCue, I ;
Erlebacher, J. .
ACTA MATERIALIA, 2022, 238
[8]   Challenges and Opportunities for Integrating Dealloying Methods into Additive Manufacturing [J].
Chuang, A. ;
Erlebacher, J. .
MATERIALS, 2020, 13 (17)
[9]   Nanoporous Metals for Catalytic and Optical Applications [J].
Ding, Yi ;
Chen, Mingwei .
MRS BULLETIN, 2009, 34 (08) :569-576
[10]   Evolution of nanoporosity in dealloying [J].
Erlebacher, J ;
Aziz, MJ ;
Karma, A ;
Dimitrov, N ;
Sieradzki, K .
NATURE, 2001, 410 (6827) :450-453