Semantic Segmentation and YOLO Detector over Aerial Vehicle Images

被引:2
|
作者
Qureshi, Asifa Mehmood [1 ]
Butt, Abdul Haleem [1 ]
Alazeb, Abdulwahab [2 ]
Al Mudawi, Naif [2 ]
Alonazi, Mohammad [3 ]
Almujally, Nouf Abdullah [4 ]
Jalal, Ahmad [1 ]
Liu, Hui [5 ]
机构
[1] Air Univ, Fac Comp & AI, Islamabad 44000, Pakistan
[2] Najran Univ, Coll Comp Sci & Informat Syst, Dept Comp Sci, Najran 55461, Saudi Arabia
[3] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Informat Syst, Al Kharj 16273, Saudi Arabia
[4] Princess Nourah bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[5] Univ Bremen, Cognit Syst Lab, Bremen, Germany
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 80卷 / 02期
关键词
Semantic segmentation; YOLOv5; vehicle detection and tracking; Kalman filter; SURF;
D O I
10.32604/cmc.2024.052582
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system's overall accuracy. Deep learning is considered to bean efficient method for object detection in vision-based systems. In this paper, we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5 (YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step, all the extracted traffic sequence images are subjected to pre-processing to remove noise and enhance the contrast level of the images. These pre-processed images are segmented by labelling each pixel to extract the uniform regions to aid the detection phase. A single-stage detector YOLOv5 is used to detect and locate vehicles in images. Each detection was exposed to Speeded Up Robust Feature (SURF) feature extraction to track multiple vehicles. Based on this, a unique number is assigned to each vehicle to easily locate them in the succeeding image frames by extracting them using the feature-matching technique. Further, we implemented a Kalman filter to track multiple vehicles. In the end, the vehicle path is estimated by using the centroid points of the rectangular bounding box predicted by the tracking algorithm. The experimental results and comparison reveal that our proposed vehicle detection and tracking system outperformed other state-of-the-art systems. The proposed implemented system provided 94.1% detection precision for Roundabout and 96.1% detection precision for Vehicle Aerial Imaging from Drone (VAID) datasets, respectively.
引用
收藏
页码:3315 / 3332
页数:18
相关论文
共 50 条
  • [31] Detection of Asphalt Pavement Cracks with YOLO Architectures from Unmanned Aerial Vehicle Images
    Odubek, Ebrar
    Atik, Muhammed Enes
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [32] Global-Local Attention Network for Semantic Segmentation in Aerial Images
    Li, Minglong
    Shan, Lianlei
    Li, Xiaobin
    Bai, Yang
    Zhou, Dengji
    Wang, Weiqiang
    Lv, Ke
    Luo, Bin
    Chen, Si-Bao
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5704 - 5711
  • [33] SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH EXPLICIT CLASS-BOUNDARY MODELING
    Marmanis, D.
    Schindler, K.
    Wegner, J. D.
    Datcu, M.
    Stilla, U.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5165 - 5168
  • [34] A Data-Related Patch Proposal for Semantic Segmentation of Aerial Images
    Shan, Lianlei
    Zhao, Guiqin
    Xie, Jun
    Cheng, Peirui
    Li, Xiaobin
    Wang, Zhepeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [35] RSNet: Rail semantic segmentation network for extracting aerial railroad images
    Rampriya, R. S.
    Sabarinathan
    Suganya, R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 4051 - 4068
  • [36] Insulator Semantic Segmentation in Aerial Images Based on Multiscale Feature Fusion
    Cui, Zheng
    Yang, Chunxi
    Wang, Sen
    COMPLEXITY, 2022, 2022
  • [37] Augmentation Invariance and Adaptive Sampling in Semantic Segmentation of Agricultural Aerial Images
    Tavera, Antonio
    Arnaudo, Edoardo
    Masone, Carlo
    Caputo, Barbara
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1655 - 1664
  • [38] SPATIAL RELATIONAL REASONING IN NETWORKS FOR IMPROVING SEMANTIC SEGMENTATION OF AERIAL IMAGES
    Mou, Lichao
    Hua, Yuansheng
    Zhu, Xiao Xiang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5232 - 5235
  • [39] MLFMNet: A Multilevel Feature Mining Network for Semantic Segmentation on Aerial Images
    Wei, Xinyu
    Rao, Lei
    Fan, Guangyu
    Chen, Niansheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 16165 - 16179
  • [40] Semantic Segmentation of Aerial Images using FCN-based Network
    Farhangfar, Saghar
    Rezaeian, Mehdi
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1864 - 1868