Binary structured physics-informed neural networks for solving equations with rapidly changing solutions

被引:0
|
作者
Liu, Yanzhi [1 ]
Wu, Ruifan [1 ]
Jiang, Ying [1 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
国家重点研发计划;
关键词
Neural networks; Physics-informed neural networks; Partial differential equations; Binary structure; DEEP LEARNING FRAMEWORK; DECOMPOSITION;
D O I
10.1016/j.jcp.2024.113341
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Physics-informed neural networks (PINNs), rooted in deep learning, have emerged as a promising approach for solving partial differential equations (PDEs). By embedding the physical information described by PDEs into feedforward neural networks, PINNs are trained as surrogate models to approximate solutions without the need for label data. Nevertheless, even though PINNs have shown remarkable performance, they can face difficulties, especially when dealing with equations featuring rapidly changing solutions. These difficulties encompass slow convergence, susceptibility to becoming trapped in local minima, and reduced solution accuracy. To address these issues, we propose a binary structured physics-informed neural network (BsPINN) framework, which employs binary structured neural network (BsNN) as the neural network component. By leveraging a binary structure that reduces inter-neuron connections compared to fully connected neural networks, BsPINNs excel in capturing the local features of solutions more effectively and efficiently. These features are particularly crucial for learning the rapidly changing in the nature of solutions. In a series of numerical experiments solving the Euler equation, Burgers equation, Helmholtz equation, and high-dimension Poisson equation, BsPINNs exhibit superior convergence speed and heightened accuracy compared to PINNs. Additionally, we compare BsPINNs with XPINNs, FBPINNs and FourierPINNs, finding that BsPINNs achieve the highest or comparable results in many experiments. Furthermore, our experiments reveal that integrating BsPINNs with Fourier feature mappings results in the most accurate predicted solutions when solving the Burgers equation and the Helmholtz equation on a 3D M & ouml;bius knot. This demonstrates the potential of BsPINNs as a foundational model. From these experiments, we discover that BsPINNs resolve the issues caused by increased hidden layers in PINNs resulting in over-fitting, and prevent the decline in accuracy due to non-smoothness of PDEs solutions.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Multi-Net strategy: Accelerating physics-informed neural networks for solving partial differential equations
    Wang, Yunzhuo
    Li, Jianfeng
    Zhou, Liangying
    Sun, Jingwei
    Sun, Guangzhong
    SOFTWARE-PRACTICE & EXPERIENCE, 2022, 52 (12): : 2513 - 2536
  • [33] Multi-Net strategy: Accelerating physics-informed neural networks for solving partial differential equations
    Wang, Yunzhuo
    Li, Jianfeng
    Zhou, Liangying
    Sun, Jingwei
    Sun, Guangzhong
    Software - Practice and Experience, 2022, 52 (12) : 2513 - 2536
  • [34] Discovering physics-informed neural networks model for solving partial differential equations through evolutionary computation
    Zhang, Bo
    Yang, Chao
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 88
  • [35] Solving spatiotemporal partial differential equations with Physics-informed Graph Neural Network
    Xiang, Zixue
    Peng, Wei
    Yao, Wen
    Liu, Xu
    Zhang, Xiaoya
    APPLIED SOFT COMPUTING, 2024, 155
  • [36] Variational Physics-informed Neural Operator (VINO) for solving partial differential equations
    Eshaghi, Mohammad Sadegh
    Anitescu, Cosmin
    Thombre, Manish
    Wang, Yizheng
    Zhuang, Xiaoying
    Rabczuk, Timon
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 437
  • [37] Solving combustion chemical differential equations via physics-informed neural network
    Wang Y.-C.
    Xing J.-K.
    Luo K.
    Wang H.-O.
    Fan J.-R.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (10): : 2084 - 2092
  • [38] Physics-informed neural networks for the shallow-water equations on the sphere
    Bihlo, Alex
    Popovych, Roman O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 456
  • [39] Control of Partial Differential Equations via Physics-Informed Neural Networks
    Carlos J. García-Cervera
    Mathieu Kessler
    Francisco Periago
    Journal of Optimization Theory and Applications, 2023, 196 : 391 - 414
  • [40] Control of Partial Differential Equations via Physics-Informed Neural Networks
    Garcia-Cervera, Carlos J.
    Kessler, Mathieu
    Periago, Francisco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 196 (02) : 391 - 414