Dynamic data reconciliation for enhancing the prediction performance of long short-term memory network

被引:1
|
作者
Zhu, Wangwang [1 ]
Zhu, Jialiang [1 ]
Yang, Qinmin [2 ]
Liu, Yi [1 ]
Zhang, Zhengjiang [3 ]
机构
[1] Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[3] Wenzhou Univ, Natl Local Joint Engn Res Ctr Digitalize Elect Des, Wenzhou 325035, Peoples R China
关键词
long short-term memory; measurement noise; data-driven modeling; dynamic data reconciliation;
D O I
10.1088/1361-6501/ad70d2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In modern process industries, long short-term memory (LSTM) network is widely used for data-driven modeling. Constrained by measuring instruments and environments, the measured datasets are generally with Gaussian/non-Gaussian distributed measurement noise. The noisy datasets will impact the modeling accuracy of the LSTM network and decrease the prediction performance of it. Aiming at addressing prediction performance impairment of the LSTM network under noisy datasets with Gaussian/non-Gaussian distribution, this study introduces dynamic data reconciliation (DDR) both into LSTM network training and into LSTM network test. Results show that DDR improves not only the data quality based on noisy datasets and the training outputs via the Bayesian formula in the model training step, but also the prediction performance based on offline measured information and the test outputs. The implementation scheme of DDR for Gaussian and non-Gaussian distributed noise is purposely designed. The effectiveness of DDR on the LSTM model is verified in a numerical example and a case involving a set of shared wind power datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Using Long Short-Term Memory for Wavefront Prediction in Adaptive Optics
    Liu, Xuewen
    Morris, Tim
    Saunter, Chris
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 537 - 542
  • [42] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [43] Enhancing controller performance via dynamic data reconciliation
    Bai, SH
    McLean, DD
    Thibault, J
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 83 (03) : 515 - 526
  • [44] Simplified long short-term memory model for robust and fast prediction
    Liu, Yong
    Hao, Xin
    Zhang, Biling
    Zhang, Yuyan
    PATTERN RECOGNITION LETTERS, 2020, 136 (136) : 81 - 86
  • [45] An Improved Long Short-Term Memory Algorithm for Cardiovascular Disease Prediction
    Revathi, T. K.
    Balasubramaniam, Sathiyabhama
    Sureshkumar, Vidhushavarshini
    Dhanasekaran, Seshathiri
    DIAGNOSTICS, 2024, 14 (03)
  • [46] LIPREADING WITH LONG SHORT-TERM MEMORY
    Wand, Michael
    Koutnik, Jan
    Schmidhuber, Jurgen
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6115 - 6119
  • [47] Correlation-based modified long short-term memory network approach for software defect prediction
    Suresh Kumar Pemmada
    H. S. Behera
    Janmenjoy Nayak
    Bighnaraj Naik
    Evolving Systems, 2022, 13 : 869 - 887
  • [48] District heating load prediction algorithm based on bidirectional long short-term memory network model
    Cui, Mianshan
    ENERGY, 2022, 254
  • [49] QUANTUM LONG SHORT-TERM MEMORY
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Fang, Yao-Lung L.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8622 - 8626
  • [50] Multi-Aircraft Trajectory Collaborative Prediction Based on Social Long Short-Term Memory Network
    Xu, Zhengfeng
    Zeng, Weili
    Chu, Xiao
    Cao, Puwen
    AEROSPACE, 2021, 8 (04)