Age of information for remote sensing with uncoordinated finite-horizon access

被引:4
作者
Hegde, Pooja [1 ]
Badia, Leonardo [3 ]
Munari, Andrea [2 ]
机构
[1] Tech Univ Munchen TUM, Sch Computat Informat & Technol, D-80333 Munich, Germany
[2] Inst Commun & Nav, German Aerosp Ctr DLR, Oberpfaffenhofen, D-82234 Wessling, Bayern, Germany
[3] Univ Padua, Dept Informat Engn, via Gradenigo 6B, I-35131 Padua, Italy
关键词
Age of information; Data acquisition; Random access; Scheduling; Distributed systems; Feedback; INTERNET;
D O I
10.1016/j.icte.2024.03.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:786 / 791
页数:6
相关论文
共 26 条
[1]   Optimal Finite Horizon Scheduling of Wireless Networked Control Systems [J].
Ayan, Onur ;
Hirche, Sandra ;
Ephremides, Anthony ;
Kellerer, Wolfgang .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (02) :927-942
[2]  
Badia Leonardo, 2022, IEEE Networking Letters, V4, P30, DOI 10.1109/LNET.2021.3133220
[3]  
Badia L, 2009, GLOB TELECOMM CONF, P3745
[4]  
Baiocchi A, 2017, 2017 PROCEEDINGS OF THE 29TH INTERNATIONAL TELETRAFFIC CONGRESS (ITC 29), VOL 1, P108, DOI [10.23919/ITC.2017.8064345, 10.1109/ITC.2017.53]
[5]   Age of Information in Random Access Channels [J].
Chen, Xingran ;
Gatsis, Konstantinos ;
Hassani, Hamed ;
Bidokhti, Shirin Saeedi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) :6548-6568
[6]   Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things [J].
Chen, Ying ;
Liu, Zhiyong ;
Zhang, Yongchao ;
Wu, Yuan ;
Chen, Xin ;
Zhao, Lian .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) :4925-4934
[7]  
Kadota I, 2018, IEEE INFOCOM SER, P1853
[8]  
Kanellopoulos D, 2019, ICT EXPRESS, V5, P77
[9]  
Kaul S, 2012, IEEE INFOCOM SER, P2731, DOI 10.1109/INFCOM.2012.6195689
[10]  
Kaul SK, 2017, IEEE INT SYMP INFO, P331, DOI 10.1109/ISIT.2017.8006544