Deformational rigidity of integrable metrics on the torus

被引:0
作者
Henheik, Joscha [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
基金
欧洲研究理事会;
关键词
Liouville metrics; deformational rigidity; geodesic flow; weak KAM theory; QUASI-LINEAR SYSTEM; GEODESIC-FLOWS; POLYNOMIAL INTEGRALS; VISCOSITY SOLUTIONS; DYNAMICAL-SYSTEMS; BILLIARD; EXISTENCE; 2-TORUS; CONJECTURE; MANIFOLDS;
D O I
10.1017/etds.2024.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is conjectured that the only integrable metrics on the two-dimensional torus are Liouville metrics. In this paper, we study a deformative version of this conjecture: we consider integrable deformations of a non-flat Liouville metric in a conformal class and show that for a fairly large class of such deformations, the deformed metric is again Liouville. The principal idea of the argument is that the preservation of rational invariant tori in the foliation of the phase space forces a linear combination on the Fourier coefficients of the deformation to vanish. Showing that the resulting linear system is non-degenerate will then yield the claim. Since our method of proof immediately carries over to higher dimensional tori, we obtain analogous statements in this more general case. To put our results in perspective, we review existing results about integrable metrics on the torus.
引用
收藏
页码:467 / 503
页数:37
相关论文
共 93 条
  • [1] TOPOLOGICAL ENTROPY
    ADLER, RL
    KONHEIM, AG
    MCANDREW, MH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) : 309 - &
  • [2] Integrable Magnetic Geodesic Flows on 2-Torus: New Examples via Quasi-Linear System of PDEs
    Agapov, S. V.
    Bialy, M.
    Mironov, A. E.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (03) : 993 - 1007
  • [3] [Агапов С.В. Agapov S.V.], 2013, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V93, P790, DOI 10.4213/mzm9206
  • [4] Arnaud M.-C., 2023, PREPRINT
  • [5] Arnold V. I., 2007, Mathematical aspects of classical and celestial mechanics, V3
  • [6] Arnold V. I., 1963, Russ. Math. Surv., V18, P9, DOI DOI 10.1070/RM1963V018N05ABEH004130
  • [7] Arnold V I., 1989, Mathematical Methods of Classical Mechanics, DOI DOI 10.1007/978-1-4757-2063-1
  • [8] ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
  • [9] THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES
    AUBRY, S
    LEDAERON, PY
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) : 381 - 422
  • [10] An integrable deformation of an ellipse of small eccentricity is an ellipse
    Avila, Artur
    De Simoi, Jacopo
    Kaloshin, Vadim
    [J]. ANNALS OF MATHEMATICS, 2016, 184 (02) : 527 - 558