The Existence Problem for Strong Complete Mappings of Finite Groups

被引:0
作者
Evans, Anthony B. [1 ]
机构
[1] Wright State Univ, Dayton, OH 45435 USA
来源
COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021 | 2024年 / 448卷
关键词
Strong complete mappings; Latin squares; ADMISSIBILITY;
D O I
10.1007/978-3-031-52969-6_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Cayley table upper M and the normal multiplication table upper N of a finite group upper G are Latin squares. There exists a Latin square orthogonal to both upper M and upper N if and only if upper G admits strong complete mappings. A natural question to ask is, which finite groups admit strong complete mappings? We will summarize work done on the existence problem for strong complete mappings of finite groups. We will also establish new classes of strongly admissible 22-groups. We will also give theoretical proofs of the strong admissibility of some groups of order 16 16, whose strong admissibility has only been proved via computer searches.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 20 条
  • [1] Strong complete mappings for 3-groups
    Akhtar, Reza
    Gagola, Stephen M., III
    [J]. DISCRETE MATHEMATICS, 2022, 345 (01)
  • [2] Bateman P.T., 1950, Amer. Math. Mon., V57, P623
  • [3] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [4] The Hall-Paige conjecture, and synchronization for affine and diagonal groups
    Bray, John N.
    Cai, Qi
    Cameron, Peter J.
    Spiga, Pablo
    Zhang, Hua
    [J]. JOURNAL OF ALGEBRA, 2020, 545 : 27 - 42
  • [5] Evans AB, 2018, DEV MATH, V57, DOI 10.1007/978-3-319-94430-2
  • [6] Evans A.B., 1990, Congr. Numer., V70, P241
  • [7] Evans A.B., 2016, JCMCC, V98, P391
  • [8] Evans A.B., 1992, Congr. Numer., V90, P65
  • [9] Infinite Latin Squares: Neighbor Balance and Orthogonality
    Evans, Anthony B.
    Martin, Gage N.
    Minden, Kaethe
    Ollis, M. A.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03) : 1 - 22
  • [10] The strong admissibility of finite Moufang loops
    Evans, Anthony B.
    Gagola, Stephen M., III
    [J]. DISCRETE MATHEMATICS, 2019, 342 (09) : 2717 - 2725