Advances in Microfluidic Systems and Numerical Modeling in Biomedical Applications: A Review

被引:5
作者
Ferreira, Mariana [1 ]
Carvalho, Violeta [1 ,2 ,3 ,4 ]
Ribeiro, Joao [5 ,6 ,7 ]
Lima, Rui A. [3 ,8 ,9 ]
Teixeira, Senhorinha [2 ]
Pinho, Diana [1 ,2 ]
机构
[1] Univ Minho, Ctr MicroElectroMechan Syst CMEMS UMinho, Campus Azurem, P-4800058 Guimara, Portugal
[2] LABBELS Associate Lab, P-4800058 Guimaraes, Portugal
[3] Univ Minho, Mech Engn Dept, MEtRics, Campus Azurem, P-4800058 Guimaraes, Portugal
[4] Univ Minho, ALGORITMI Ctr, LASI, Campus Azurem, P-4804533 Guimaraes, Portugal
[5] Inst Politecn Braganca, P-5300052 Braganca, Portugal
[6] Lab Associado Sustentabilidade & Tecnol Regioes Mo, Campus Santa Apolonia, P-5300253 Braganca, Portugal
[7] CIMO Mt Res Ctr, Campus Santa Apolonia, P-5300253 Braganca, Portugal
[8] Univ Porto, Fac Engn, CEFT Transport Phenomena Res Ctr, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[9] Univ Porto, Fac Engn, ALiCE Associate Lab Chem Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
基金
瑞典研究理事会;
关键词
numerical simulation; microfluidics; organ-on-a-chip; microfluidics systems; mixing; ON-A-CHIP; CHAOTIC ADVECTION; MASS-TRANSPORT; DRUG-DELIVERY; CELL-CULTURE; LAMINAR-FLOW; DEVICES; FABRICATION; SIMULATION; DIFFUSION;
D O I
10.3390/mi15070873
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale devices. This review explores fabrication techniques and common materials of microfluidic devices, focusing on soft lithography and additive manufacturing. Microfluidic systems applications, including nucleic acid amplification and protein synthesis, as well as point-of-care diagnostics, DNA analysis, cell cultures, and organ-on-a-chip models (e.g., lung-, brain-, liver-, and tumor-on-a-chip), are discussed. Recent studies have applied computational tools such as ANSYS Fluent 2024 software to numerically simulate the flow behavior. Outside of the study cases, this work reports fundamental aspects of microfluidic simulations, including fluid flow, mass transport, mixing, and diffusion, and highlights the emergent field of organ-on-a-chip simulations. Additionally, it takes into account the application of geometries to improve the mixing of samples, as well as surface wettability modification. In conclusion, the present review summarizes the most relevant contributions of microfluidic systems and their numerical modeling to biomedical engineering.
引用
收藏
页数:30
相关论文
共 145 条
  • [41] Integrated microfluidic devices
    Erickson, D
    Li, DQ
    [J]. ANALYTICA CHIMICA ACTA, 2004, 507 (01) : 11 - 26
  • [42] Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes
    Firpo, G.
    Angeli, E.
    Repetto, L.
    Valbusa, U.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2015, 481 : 1 - 8
  • [43] Mapping low-Reynolds-number microcavity flows using microfluidic screening devices
    Fishler, Rami
    Mulligan, Molly K.
    Sznitman, Josue
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2013, 15 (04) : 491 - 500
  • [44] Microfluidic mixing via acoustically driven chaotic advection
    Frommelt, Thomas
    Kostur, Marcin
    Wenzel-Schaefer, Melanie
    Talkner, Peter
    Haenggi, Peter
    Wixforth, Achim
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (03)
  • [45] Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing
    Gaal, Gabriel
    Mendes, Melissa
    de Almeida, Tiago P.
    Piazzetta, Maria H. O.
    Gobbi, Angelo L.
    Riul, Antonio, Jr.
    Rodrigues, Varlei
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2017, 242 : 35 - 40
  • [46] Microfluidic systems for the analysis of viscoelastic fluid flow phenomena in porous media
    Galindo-Rosales, F. J.
    Campo-Deano, L.
    Pinho, F. T.
    van Bokhorst, E.
    Hamersma, P. J.
    Oliveira, M. S. N.
    Alves, M. A.
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2012, 12 (1-4) : 485 - 498
  • [47] Groundwater Flow and Moisture Dynamics in the Swash Zone: Effects of Heterogeneous Hydraulic Conductivity and Capillarity
    Geng, Xiaolong
    Heiss, James W.
    Michael, Holly A.
    Boufadel, Michel C.
    Lee, Kenneth
    [J]. WATER RESOURCES RESEARCH, 2020, 56 (11)
  • [48] Mass transport and surface reactions in microfluidic systems
    Gervais, T
    Jensen, KF
    [J]. CHEMICAL ENGINEERING SCIENCE, 2006, 61 (04) : 1102 - 1121
  • [49] Enhancement of microfluidic mixing using time pulsing
    Glasgow, I
    Aubry, N
    [J]. LAB ON A CHIP, 2003, 3 (02) : 114 - 120
  • [50] Computational fluid dynamics (CFD) software tools for microfluidic applications - A case study
    Glatzel, Thomas
    Litterst, Christian
    Cupelli, Claudio
    Lindemann, Timo
    Moosmann, Christian
    Niekrawletz, Remigius
    Streule, Wolfgang
    Zengerle, Roland
    Koltay, Peter
    [J]. COMPUTERS & FLUIDS, 2008, 37 (03) : 218 - 235