Graphene-PbS Quantum Dot Heterostructure for Broadband Photodetector with Enhanced Sensitivity

被引:0
作者
Qing, Jincheng [1 ]
Wang, Shicai [2 ]
Gu, Shuyi [1 ]
Lin, Lin [2 ]
Xie, Qinpei [1 ]
Li, Daming [1 ]
Huang, Wen [2 ]
Guo, Junxiong [1 ,3 ,4 ]
机构
[1] Chengdu Univ, Inst Adv Study, Sch Elect Informat & Elect Engn, Chengdu 610106, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Integrated Circuit Sci & Engn, Exemplary Sch Microelect, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
[4] UESTC, Chengdu Res Inst, Chengdu 610207, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
graphene; PbS quantum dots; broadband photodetector; high sensitivity; heterostructure; RAMAN-SPECTROSCOPY; PLASMONICS; LAYER;
D O I
10.3390/s24175508
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Photodetectors converting light into electrical signals are crucial in various applications. The pursuit of high-performance photodetectors with high sensitivity and broad spectral range simultaneously has always been challenging in conventional semiconductor materials. Graphene, with its zero bandgap and high electron mobility, is an attractive candidate, but its low light absorption coefficient restricts its practical application in light detection. Integrating graphene with light-absorbing materials like PbS quantum dots (QDs) can potentially enhance its photodetection capabilities. Here, this work presents a broadband photodetector with enhanced sensitivity based on a graphene-PbS QD heterostructure. The device leverages the high carrier mobility of graphene and the strong light absorption of PbS QDs, achieving a wide detection range from ultraviolet to near-infrared. Employing a simple spinning method, the heterostructure demonstrates ultrahigh responsivity up to the order of 107 A/W and a specific detectivity on the order of 1013 Jones, showcasing significant potential for photoelectric applications.
引用
收藏
页数:12
相关论文
共 37 条
[11]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[12]   Photocurrent in graphene harnessed by tunable intrinsic plasmons [J].
Freitag, Marcus ;
Low, Tony ;
Zhu, Wenjuan ;
Yan, Hugen ;
Xia, Fengnian ;
Avouris, Phaedon .
NATURE COMMUNICATIONS, 2013, 4
[13]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242
[14]  
Guo JX, 2024, NAT COMMUN, V15, DOI 10.1038/s41467-024-49592-4
[15]   Chromatic Plasmonic Polarizer-Based Synapse for All-Optical Convolutional Neural Network [J].
Guo, Junxiong ;
Liu, Yu ;
Lin, Lin ;
Li, Shangdong ;
Cai, Ji ;
Chen, Jianbo ;
Huang, Wen ;
Lin, Yuan ;
Xu, Jun .
NANO LETTERS, 2023, 23 (20) :9651-9656
[16]   Raman scattering from high-frequency phonons in supported n-graphene layer films [J].
Gupta, A. ;
Chen, G. ;
Joshi, P. ;
Tadigadapa, S. ;
Eklund, P. C. .
NANO LETTERS, 2006, 6 (12) :2667-2673
[17]   Photoelectrical response of hybrid graphene-PbS quantum dot devices [J].
Huang, Y. Q. ;
Zhu, R. J. ;
Kang, N. ;
Du, J. ;
Xu, H. Q. .
APPLIED PHYSICS LETTERS, 2013, 103 (14)
[18]   A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks [J].
Kahng, Yung Ho ;
Lee, Sangchul ;
Choe, Minhyeok ;
Jo, Gunho ;
Park, Woojin ;
Yoon, Jongwon ;
Hong, Woong-Ki ;
Cho, Chun Hum ;
Lee, Byoung Hun ;
Lee, Takhee .
NANOTECHNOLOGY, 2011, 22 (04)
[19]   Graphene transfer: key for applications [J].
Kang, Junmo ;
Shin, Dolly ;
Bae, Sukang ;
Hong, Byung Hee .
NANOSCALE, 2012, 4 (18) :5527-5537
[20]  
Konstantatos G, 2012, NAT NANOTECHNOL, V7, P363, DOI [10.1038/nnano.2012.60, 10.1038/NNANO.2012.60]