Graphene-PbS Quantum Dot Heterostructure for Broadband Photodetector with Enhanced Sensitivity

被引:0
作者
Qing, Jincheng [1 ]
Wang, Shicai [2 ]
Gu, Shuyi [1 ]
Lin, Lin [2 ]
Xie, Qinpei [1 ]
Li, Daming [1 ]
Huang, Wen [2 ]
Guo, Junxiong [1 ,3 ,4 ]
机构
[1] Chengdu Univ, Inst Adv Study, Sch Elect Informat & Elect Engn, Chengdu 610106, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Integrated Circuit Sci & Engn, Exemplary Sch Microelect, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
[4] UESTC, Chengdu Res Inst, Chengdu 610207, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
graphene; PbS quantum dots; broadband photodetector; high sensitivity; heterostructure; RAMAN-SPECTROSCOPY; PLASMONICS; LAYER;
D O I
10.3390/s24175508
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Photodetectors converting light into electrical signals are crucial in various applications. The pursuit of high-performance photodetectors with high sensitivity and broad spectral range simultaneously has always been challenging in conventional semiconductor materials. Graphene, with its zero bandgap and high electron mobility, is an attractive candidate, but its low light absorption coefficient restricts its practical application in light detection. Integrating graphene with light-absorbing materials like PbS quantum dots (QDs) can potentially enhance its photodetection capabilities. Here, this work presents a broadband photodetector with enhanced sensitivity based on a graphene-PbS QD heterostructure. The device leverages the high carrier mobility of graphene and the strong light absorption of PbS QDs, achieving a wide detection range from ultraviolet to near-infrared. Employing a simple spinning method, the heterostructure demonstrates ultrahigh responsivity up to the order of 107 A/W and a specific detectivity on the order of 1013 Jones, showcasing significant potential for photoelectric applications.
引用
收藏
页数:12
相关论文
共 37 条
[1]   High resolution patterning of PbS quantum dots/graphene photodetectors with high responsivity via photolithography with a top graphene layer to protect surface ligands [J].
Ahn, Seungbae ;
Chen, Wenjun ;
Vazquez-Mena, Oscar .
NANOSCALE ADVANCES, 2021, 3 (21) :6206-6212
[2]   Optoelectronic response of hybrid PbS-QD/graphene photodetectors [J].
Ahn, Seungbae ;
Chung, Hyeseung ;
Chen, Wenjun ;
Moreno-Gonzalez, Miguel A. ;
Vazquez-Mena, Oscar .
JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (23)
[3]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   High-Performance PbS NCs-Graphene Phototransistor With Memory Function [J].
Che, Y. L. ;
Cao, X. L. ;
Yao, J. Q. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2024, 36 (11) :753-756
[6]   Ferroelectric-controlled graphene plasmonic surfaces for all-optical neuromorphic vision [J].
Chen, Jianbo ;
Liu, Yu ;
Li, Shangdong ;
Lin, Lin ;
Li, Yadong ;
Huang, Wen ;
Guo, Junxiong .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (03) :765-773
[7]   QE of cadmium sulphide QD photodetectors [J].
Dakhil, Tahseen ;
Abdulalmuhsin, Samir M. ;
Al-Khursan, Amin Habbeb .
MICRO & NANO LETTERS, 2018, 13 (08) :1185-1187
[8]   Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices [J].
Farmer, Damon B. ;
Golizadeh-Mojarad, Roksana ;
Perebeinos, Vasili ;
Lin, Yu-Ming ;
Tulevski, George S. ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (01) :388-392
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57