Two-Stage Classification of Future Knee Osteoarthritis Severity After 8 Years Using MRI: Data from the Osteoarthritis Initiative

被引:2
作者
Nurmirinta, Teemu A. T. [1 ,4 ]
Turunen, Mikael J. [1 ,2 ]
Korhonen, Rami K. [1 ]
Tohka, Jussi [3 ]
Liukkonen, Mimmi K. [4 ]
Mononen, Mika E. [1 ]
机构
[1] Univ Eastern Finland, Dept Tech Phys, POB 1627, FI-70211 Kuopio, Finland
[2] Kuopio Univ Hosp, Sci Serv Ctr, Wellbeing Serv Cty North Savo, Kuopio, Finland
[3] Univ Eastern Finland, AI Virtanen Inst Mol Sci, Kuopio, Finland
[4] Kuopio Univ Hosp, Diagnost Imaging Ctr, Wellbeing Serv Cty North Savo, Kuopio, Finland
基金
美国国家卫生研究院;
关键词
Knee osteoarthritis; Machine learning; MRI; Classification; Multiclass classification; Severity; RISK;
D O I
10.1007/s10439-024-03578-x
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Currently, there are no methods or tools available in clinical practice for classifying future knee osteoarthritis (KOA). In this study, we aimed to fill this gap by classifying future KOA into three severity grades: KL01 (healthy), KL2 (moderate), and KL34 (severe) based on the Kellgren-Lawrance scale. Due to the complex nature of multiclass classification, we used a two-stage method, which separates the classification task into two binary classifications (KL01 vs. KL234 in the first stage and KL2 vs. KL34 in the second stage). Our machine learning (ML) model used two Balanced Random Forest algorithms and was trained with gender, age, height, weight, and quantitative knee morphology obtained from magnetic resonance imaging. Our training dataset comprised longitudinal 8-year follow-up data of 1213 knees from the Osteoarthritis Initiative. Through extensive experimentation with various feature combinations, we identified KL baseline and weight as the most essential features, while gender surprisingly proved to be one of the least influential feature. Our best classification model generated a weighted F1 score of 79.0% and a balanced accuracy of 65.9%. The area under the receiver operating characteristic curve was 83.0% for healthy (KL01) versus moderate (KL2) or severe (KL34) KOA patients and 86.6% for moderate (KL2) versus severe (KL34) KOA patients. We found a statistically significant difference in performance between our two-stage classification model and the traditional single-stage classification model. These findings demonstrate the encouraging results of our two-stage classification model for multiclass KOA severity classification, suggesting its potential application in clinical settings in future.
引用
收藏
页码:3172 / 3183
页数:12
相关论文
共 48 条
[41]   Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep Convolutional Neural Networks [J].
Tiulpin, Aleksei ;
Saarakkala, Simo .
DIAGNOSTICS, 2020, 10 (11)
[42]   Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data [J].
Tiulpin, Aleksei ;
Klein, Stefan ;
Bierma-Zeinstra, Sita M. A. ;
Thevenot, Jerome ;
Rahtu, Esa ;
van Meurs, Joyce ;
Oei, Edwin H. G. ;
Saarakkala, Simo .
SCIENTIFIC REPORTS, 2019, 9 (1)
[43]   Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach [J].
Tiulpin, Aleksei ;
Thevenot, Jerome ;
Rahtu, Esa ;
Lehenkari, Petri ;
Saarakkala, Simo .
SCIENTIFIC REPORTS, 2018, 8
[44]   Evaluation of machine learning algorithms for health and wellness applications: A tutorial [J].
Tohka, Jussi ;
van Gils, Mark .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132 (132)
[45]   Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images [J].
Tolpadi, Aniket A. ;
Lee, Jinhee J. ;
Pedoia, Valentina ;
Majumdar, Sharmila .
SCIENTIFIC REPORTS, 2020, 10 (01)
[46]   Eight-year trajectories of changes in health-related quality of life in knee osteoarthritis: Data from the Osteoarthritis Initiative (OAI) [J].
Tormalehto, Soili ;
Aarnio, Emma ;
Mononen, Mika E. ;
Arokoski, Jari P. A. ;
Korhonen, Rami K. ;
Martikainen, Janne A. .
PLOS ONE, 2019, 14 (07)
[47]   Predictive analytics in health care: how can we know it works? [J].
Van Calster, Ben ;
Wynants, Laure ;
Timmerman, Dirk ;
Steyerberg, Ewout W. ;
Collins, Gary S. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2019, 26 (12) :1651-1654
[48]   Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data [J].
Widera, Pawel ;
Welsing, Paco M. J. ;
Ladel, Christoph ;
Loughlin, John ;
Lafeber, Floris P. F. J. ;
Dop, Florence Petit ;
Larkin, Jonathan ;
Weinans, Harrie ;
Mobasheri, Ali ;
Bacardit, Jaume .
SCIENTIFIC REPORTS, 2020, 10 (01)