A Novel Open Set Adaptation Network for Marine Machinery Fault Diagnosis

被引:2
|
作者
Su, Yulong [1 ]
Guo, Yu [1 ]
Zhang, Jundong [1 ]
Shi, Jun [2 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, Dalian 116026, Peoples R China
[2] CSSC Marine Technol Co Ltd, Shanghai 200000, Peoples R China
关键词
domain adaptation; adversarial learning; marine machinery; open set fault diagnosis;
D O I
10.3390/jmse12081382
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Domain adaptation techniques have effectively tackled fault diagnosis under varying operational conditions. Many existing studies presume that machine health states remain consistent between training and testing data. However, in real-world scenarios, fault modes during testing are often unpredictable, introducing unknown faults that challenge the effectiveness of domain adaptation-based fault diagnosis methods. To address these challenges, this paper proposes a Deep Open Set Domain Adaptation Network (DODAN). Firstly, a feature extraction module based on multi-scale depthwise separable convolutions is constructed for discriminative feature extraction. To improve the model's adaptability, an adversarial training strategy is implemented to learn generalized features that are resilient to unknown domain shifts. Additionally, an outlier detection module is employed to determine the optimal decision boundaries for each class representation space, enabling the classification of known fault modes and the identification of unknown ones. Extensive diagnostic experiments on two marine machinery datasets validate the effectiveness of the proposed method. Furthermore, ablation studies verify the efficacy of the proposed modules and strategies, highlighting significant potential for practical applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763
  • [32] A Novel Weighted Adversarial Transfer Network for Partial Domain Fault Diagnosis of Machinery
    Li, Weihua
    Chen, Zhuyun
    He, Guolin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1753 - 1762
  • [33] Open set domain adaptation method based on adversarial dual classifiers for fault diagnosis
    She B.
    Liang W.
    Qin F.
    Dong H.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (07): : 325 - 334
  • [34] Open-Set Domain Adaptation via Feature Clustering and Separation for Fault Diagnosis
    Wang, Xuan
    Shi, Zhangsong
    Sun, Shiyan
    Li, Lin
    IEEE SENSORS JOURNAL, 2024, 24 (10) : 16347 - 16361
  • [35] Application of fuzzy SOFM neural network and rough set theory on fault diagnosis for rotating machinery
    Jiang, DX
    Li, K
    Zhao, G
    Diao, JH
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 561 - 566
  • [36] Application of variable precision rough set model and neural network to rotating machinery fault diagnosis
    Zhou, QM
    Yin, CB
    Li, YS
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS, 2005, 3642 : 575 - 584
  • [37] Dual adversarial network for cross-domain open set fault diagnosis
    Zhao, Chao
    Shen, Weiming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 221
  • [38] Intelligent Bearing Fault Diagnosis Based on Open Set Convolutional Neural Network
    Zhang, Bo
    Zhou, Caicai
    Li, Wei
    Ji, Shengfei
    Li, Hengrui
    Tong, Zhe
    Ng, See-Kiong
    MATHEMATICS, 2022, 10 (21)
  • [39] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)
  • [40] OPN: Open-Set Semi-Supervised Learning for Intelligent Fault Diagnosis of Rotating Machinery
    Su, Zuqiang
    Zhang, Xiaolong
    Wang, Guoyin
    Lu, Sheng
    Feng, Song
    Tang, Baoping
    IEEE SENSORS JOURNAL, 2024, 24 (22) : 37332 - 37341