Looking for evidence of high-mass star formation at core scale in a massive molecular clump

被引:0
|
作者
Ortega, M. E. [1 ]
Martinez, N. C. [1 ]
Paron, S. [1 ]
Marinelli, A. [1 ]
Isequilla, N. L. [1 ]
机构
[1] CONICET Univ Buenos Aires, Inst Astron & Fis Espacio, CC 67,Suc 28, RA-1428 Buenos Aires, DF, Argentina
关键词
stars: formation; ISM: molecules; ISM: jets and outflows; COMPLEX ORGANIC-MOLECULES; METHYL CYANIDE CH3CN; ALMA OBSERVATIONS; PROPYNE CH3CCH; SOURCE CATALOG; LINE SURVEY; OUTFLOW; REGION; FRAGMENTATION; ATLASGAL;
D O I
10.1051/0004-6361/202346661
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. High-mass stars are formed as a result of the fragmentation of massive molecular clumps. However, what it is not clear is whether this fragmentation gives rise to stable prestellar cores massive enough to directly form high-mass stars or leads to prestellar cores of low masses that, by acquiring material from the environment, generate high-mass stars. Several recent observational studies focused on the characterisation of prestellar massive clump candidates. Nevertheless, studies of active massive clumps at different evolutionary stages are still needed to gain a complete understanding of how high-mass stars form. Aims. We present a comprehensive physical and chemical study of the fragmentation and star formation activity towards the massive clump AGAL G338.9188+0.5494, which harbours the extended green object EGO 338.92+0.55(b). The presence of an EGO embedded in a massive clump suggests that high-mass star formation is occurring at clump scale. The main goal of this work is to find evidence of such high-mass star formation, but at core scale.Methods. Using millimetre observations of continuum and molecular lines obtained from the Atacama Large Millimeter Array database at Bands 6 and 7, we study the substructure of the massive clump AGAL G338.9188+0.5494. The angular resolution of the data at Band 7 is about 0 ''.5, which allows us to resolve structures of about 0.01 pc (similar to 2000 au) at the distance of 4.4 kpc. Results. The continuum emission at 340 GHz reveals that the molecular clump is fragmented into five cores, labelled C1 to C5. The (CO)-C-12 J = 3-2 emission shows the presence of molecular outflows related to three of them. The molecular outflow related to core C1 is among the most massive (from 0.25 to 0.77 M-circle dot) and energetic (from 0.4 x 10(46) to 1.2 x 10(46) erg), considering studies carried out with similar observations towards this type of source. Rotational diagrams for the CH3CN and CH3CCH yield temperatures of about 340 and 72 K, respectively, for the core C1. The different temperatures show that the methyl cyanide would trace a gas layer closer to the protostar than the methyl acetylene, which would trace outermost layers. Using a range of temperatures going from 120 K (about the typical molecular desorption temperature in hot cores) to the temperature derived from CH3CN (about 340 K), the mass of core C1 ranges from 3 to 10 M-circle dot. The mid-IR 4.5 mu m extended emission related to the EGO coincides in position and inclination with the discovered molecular outflow arising from core C1, which indicates that it should be the main source responsible for the 4.5 mu m brightness. The average mass and energy of such a molecular outflow is about 0.5 M-circle dot and 10(46) erg, respectively, which suggest that 10 M-circle dot is the most likely mass value for core C1. Additionally, we find that the region is chemically very rich with several complex molecular species. In particular, from an analysis of the CN emission, we find strong evidence that this radical is indirectly tracing the molecular outflows, or, more precisely, the border of the cavity walls carved out by such outflows, and therefore we point out that this is probably one of the first clear detection of CN as a tracer of molecular outflows in star-forming regions.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Filament fragmentation in high-mass star formation
    Beuther, H.
    Ragan, S. E.
    Johnston, K.
    Henning, Th.
    Hacar, A.
    Kainulainen, J. T.
    ASTRONOMY & ASTROPHYSICS, 2015, 584
  • [22] The Star-formation Law in Galactic High-mass Star-forming Molecular Clouds
    Retes-Romero, R.
    Mayya, Y. D.
    Luna, A.
    Carrasco, L.
    ASTROPHYSICAL JOURNAL, 2017, 839 (02)
  • [23] Tracing early evolutionary stages of high-mass star formation with molecular lines
    Marseille, M. G.
    van der Tak, F. F. S.
    Herpin, F.
    Jacq, T.
    ASTRONOMY & ASTROPHYSICS, 2010, 522
  • [24] Evidence of high-mass star formation through multiscale mass accretion in hub-filament-system clouds
    Liu, Hong-Li
    Tej, Anandmayee
    Liu, Tie
    Sanhueza, Patricio
    Qin, Sheng-Li
    He, Jinhua
    Goldsmith, Paul F.
    Garay, Guido
    Pan, Sirong
    Morii, Kaho
    Li, Shanghuo
    Stutz, Amelia
    Tatematsu, Ken'ichi
    Xu, Feng-Wei
    Bronfman, Leonardo
    Saha, Anindya
    Issac, Namitha
    Baug, Tapas
    Toth, L. Viktor
    Dewangan, Lokesh
    Wang, Ke
    Zhou, Jianwen
    Lee, Chang Won
    Yang, Dongting
    Luo, Anxu
    Shen, Xianjin
    Zhang, Yong
    Wu, Yue-Fang
    Ren, Zhiyuan
    Liu, Xun-Chuan
    Soam, Archana
    Zhang, Siju
    Luo, Qiu-Yi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (03) : 3719 - 3734
  • [25] High-mass star formation in the IRAS 17233-3606 region:: a new nearby and bright hot core in the southern sky
    Leurini, S.
    Hieret, C.
    Thorwirth, S.
    Wyrowski, F.
    Schilke, P.
    Menten, K. M.
    Guesten, R.
    Zapata, L.
    ASTRONOMY & ASTROPHYSICS, 2008, 485 (01) : 167 - U97
  • [26] Comparison of Low-Mass and High-Mass Star Formation
    Tan, Jonathan C.
    FROM INTERSTELLAR CLOUDS TO STAR-FORMING GALAXIES: UNIVERSAL PROCESSES?, 2015, (315): : 154 - 162
  • [27] ATLASGAL - evolutionary trends in high-mass star formation
    Urquhart, J. S.
    Wells, M. R. A.
    Pillai, T.
    Leurini, S.
    Giannetti, A.
    Moore, T. J. T.
    Thompson, M. A.
    Figura, C.
    Colombo, D.
    Yang, A. Y.
    Koenig, C.
    Wyrowski, F.
    Menten, K. M.
    Rigby, A. J.
    Eden, D. J.
    Ragan, S. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 510 (03) : 3389 - 3407
  • [28] ALMA-IMF: XV. Core mass function in the high-mass star formation regime
    Louvet, F.
    Sanhueza, P.
    Stutz, A.
    Men'shchikov, A.
    Motte, F.
    Galvan-Madrid, R.
    Bontemps, S.
    Pouteau, Y.
    Ginsburg, A.
    Csengeri, T.
    Di Francesco, J.
    Dell'Ova, P.
    Gonzalez, M.
    Didelon, P.
    Braine, J.
    Cunningham, N.
    Thomasson, B.
    Lesaffre, P.
    Hennebelle, P.
    Bonfand, M.
    Gusdorf, A.
    Alverez-Gutierrez, R. H.
    Nony, T.
    Busquet, G.
    Olguin, F.
    Bronfman, L.
    Salinas, J.
    Fernandez-Lopez, M.
    Moraux, E.
    Liu, H. L.
    Lu, X.
    Huei-Ru, V.
    Towner, A.
    Valeille-Manet, M.
    Brouillet, N.
    Herpin, F.
    Lefloch, B.
    Baug, T.
    Maud, L.
    Lopez-Sepulcre, A.
    Svoboda, B.
    ASTRONOMY & ASTROPHYSICS, 2024, 690
  • [29] High-mass star forming regions: An ALMA view
    R. Cesaroni
    Astrophysics and Space Science, 2008, 313 : 23 - 28
  • [30] G30.79 FIR 10: a gravitationally bound infalling high-mass star-forming clump
    Cortes, P. C.
    Parra, R.
    Cortes, J. R.
    Hardy, E.
    ASTRONOMY & ASTROPHYSICS, 2010, 519