Application of artificial intelligence tools in wastewater and waste gas treatment systems: Recent advances and prospects

被引:10
作者
Behera, Shishir Kumar [1 ]
Karthika, S. [2 ]
Mahanty, Biswanath [3 ]
Meher, Saroj K. [4 ]
Zafar, Mohd. [5 ]
Baskaran, Divya [6 ,7 ]
Rajamanickam, Ravi [8 ]
Das, Raja [9 ]
Pakshirajan, Kannan [10 ]
Bilyaminu, Abubakar M. [11 ]
Rene, Eldon R. [11 ]
机构
[1] Vellore Inst Technol, Sch Chem Engn, Proc Simulat Res Grp, Vellore 632014, Tamil Nadu, India
[2] Anna Univ, Alagappa Coll Technol, Dept Chem Engn, Chennai 600025, Tamil Nadu, India
[3] Karunya Inst Technol & Sci, Div Biotechnol, Coimbatore 641114, Tamil Nadu, India
[4] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore 560059, India
[5] Univ Technol & Appl Sci Sur, Coll Appl Sci & Pharm, Dept Appl Biotechnol, POB 484, Sur 411, Oman
[6] Chonnam Natl Univ, Dept Chem & Biomol Engn, Yeosu 59626, Jeonnam, South Korea
[7] Saveetha Inst Med & Tech Sci, Saveetha Dent Coll & Hosp, Dept Biomat, Chennai 600077, Tamil Nadu, India
[8] Annamalai Univ, Dept Chem Engn, Chidambaram 608002, Tamil Nadu, India
[9] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[10] Indian Inst Technol Guwahati, Dept Biosci & Bioengn, Gauhati 781039, Assam, India
[11] IHE Delft Inst Water Educ, Dept Water Supply Sanitat & Environm Engn, POB 3015, NL-2601 DA Delft, Netherlands
关键词
Artificial neural network; Machine learning; Air pollution; Wastewater treatment; Resource recovery; Automation and control; NEURAL-NETWORK ANN; BIOLOGICAL HYDROGEN-PRODUCTION; SEQUENCING BATCH REACTOR; FLUIDIZED-BED REACTOR; TREATMENT-PLANT; ANAEROBIC-DIGESTION; MEMBRANE BIOREACTOR; MULTILAYER PERCEPTRON; BIODIESEL PRODUCTION; ORGANIC POLLUTANTS;
D O I
10.1016/j.jenvman.2024.122386
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes. Additionally, the successful implementation of AI-controlled wastewater and waste gas treatment systems, along with real-time monitoring at the industrial scale are discussed.
引用
收藏
页数:18
相关论文
共 205 条
[1]  
Aayush K, 2020, Asian Journal of Management, V11, P285, DOI [10.5958/2321-5763.2020.00044.x, 10.5958/2321-5763.2020.00044.X, DOI 10.5958/2321-5763.2020.00044.X]
[2]  
Abb, 2024, About us
[3]   Adsorption of Indigo Carmine dye onto the surface-modified adsorbent prepared from municipal waste and simulation using deep neural network [J].
Ahmad, Muhammad Bilal ;
Soomro, Umama ;
Muqeet, Muhammad ;
Ahmed, Zubair .
JOURNAL OF HAZARDOUS MATERIALS, 2021, 408
[4]   Deep learning modelling techniques: current progress, applications, advantages, and challenges [J].
Ahmed, Shams Forruque ;
Alam, Md. Sakib Bin ;
Hassan, Maruf ;
Rozbu, Mahtabin Rodela ;
Ishtiak, Taoseef ;
Rafa, Nazifa ;
Mofijur, M. ;
Ali, A. B. M. Shawkat ;
Gandomi, Amir H. .
ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (11) :13521-13617
[5]   Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: insights from a comprehensive bibliometric analysis [J].
Ai, Weikun ;
Wang, Jiabin ;
Wen, Junhui ;
Wang, Shuai ;
Tan, Wanting ;
Zhang, Zhenzong ;
Liang, Ke ;
Zhang, Ruiqin ;
Li, Wenjie .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (24) :65482-65499
[6]   Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique [J].
Alibak, Ali Hosin ;
Khodarahmi, Mohsen ;
Fayyazsanavi, Pooya ;
Alizadeh, Seyed Mehdi ;
Hadi, Arkan Jasim ;
Aminzadehsarikhanbeglou, Elnaz .
JOURNAL OF CLEANER PRODUCTION, 2022, 337
[7]   Prediction the performance of multistage moving bed biological process using artificial neural network (ANN) [J].
Almomani, Fares .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 744
[8]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[9]  
[Anonymous], 2024, Aqua suite
[10]   Artificial neural network and techno-economic estimation with algae-based tertiary wastewater treatment [J].
Ansari, Faiz Ahmad ;
Nasr, Mahmoud ;
Rawat, Ismail ;
Bux, Faizal .
JOURNAL OF WATER PROCESS ENGINEERING, 2021, 40