Toward Robust and Generalizable Federated Graph Neural Networks for Decentralized Spatial-Temporal Data Modeling

被引:0
|
作者
Tian, Yuxing [1 ]
Liu, Lei [1 ]
Feng, Jie [2 ,3 ]
Pei, Qingqi [2 ,3 ]
Chen, Chen [2 ,3 ]
Du, Jun [4 ]
Wu, Celimuge [5 ]
机构
[1] Xidian Univ, Guangzhou Inst Technol, Guangzhou 510555, Peoples R China
[2] Xidian Univ, State Key Lab integrated Serv Networks, Xian 710071, Peoples R China
[3] Xidian Univ, Sch Telecommun Engineer, Xian 710071, Peoples R China
[4] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[5] Univ Electrocommun, Meta Networking Res Ctr, Tokyo 1828585, Japan
关键词
Data models; Servers; Training; Graph neural networks; Message passing; Sensors; Predictive models; Federated learning; split learning; graph neural network; spatial-temporal forecasting;
D O I
10.1109/TNSM.2024.3386740
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning has been combined with graph learning for modeling spatial-temporal data while maintaining data confidentiality and safety. However, there are still several issues: 1) In practical usage, some clients may be unable to participate in the model inference due to poor network signal, malicious attacks, etc. 2) In the communication process, the uploaded information is easily disturbed by noise. The performance of the graph model will be seriously affected by its low robustness. Additionally, the assumption of identical distribution between the training and testing domain does not hold in practical scenarios, resulting in overfitting and poor generalization ability of the trained models. 3) The relations that exist among clients may change dynamically over time and manually constructing the graph structure of clients may not accurately represent the relations among clients. In this paper, we address all the above limitations by proposing a robust hierarchical split-federated graph model named DCSFG. Specifically, DCSFG combines split-federated learning and spatial-temporal graph model to better capture the spatial-temporal dependencies. We propose a Dropclient method and introduce the uncertainty estimation to enhance the robustness and generlization ability of the model. We also design a dual-sub-decoders structure for clients so that they can perform predictions locally and independently when they are unable to participate in the inference process. A novel hierarchical graph message passing structure is proposed to enable each client to perceive the global and local information. The extensive experimental results demonstrate the effectiveness of DCSFG.
引用
收藏
页码:2637 / 2650
页数:14
相关论文
共 50 条
  • [1] Spatial-temporal graph neural networks for groundwater data
    Taccari, Maria Luisa
    Wang, He
    Nuttall, Jonathan
    Chen, Xiaohui
    Jimack, Peter K.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Spatial-Temporal Graph Boosting Networks: Enhancing Spatial-Temporal Graph Neural Networks via Gradient Boosting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Zheng, Yan
    Wang, Liang
    Wang, Junpeng
    Dai, Xin
    Zhuang, Zhongfang
    Zhang, Wei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 504 - 513
  • [3] Spatial-Temporal Data Inference With Graph Attention Neural Networks in Sparse Mobile Crowdsensing
    Yang, Guisong
    Wen, Panpan
    Liu, Yutong
    Kong, Linghe
    Liu, Yunhuai
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4617 - 4626
  • [4] Spatial Temporal Graph Neural Networks for Decentralized Control of Robot Swarms
    Chen, Siji
    Sun, Yanshen
    Li, Peihan
    Zhou, Lifeng
    Lu, Chang-Tien
    31ST ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2023, 2023, : 450 - 453
  • [5] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
    Song, Chao
    Lin, Youfang
    Guo, Shengnan
    Wan, Huaiyu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 914 - 921
  • [6] Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
    Li, Mengzhang
    Zhu, Zhanxing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4189 - 4196
  • [7] Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Liu, Yingru
    Xie, Kun
    He, Shaoyao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 890 - 897
  • [8] Graph WaveNet for Deep Spatial-Temporal Graph Modeling
    Wu, Zonghan
    Pan, Shirui
    Long, Guodong
    Jiang, Jing
    Zhang, Chengqi
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1907 - 1913
  • [9] An Adaptive Federated Relevance Framework for Spatial-Temporal Graph Learning
    Zhang T.
    Liu Y.
    Shen Z.
    Xu R.
    Chen X.
    Huang X.
    Zheng X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (05): : 2227 - 2240
  • [10] Spatial-temporal correlated graph neural networks based on neighborhood feature selection for traffic data prediction
    Yang, Jiale
    Xie, Fei
    Yang, Jiquan
    Shi, Jianjun
    Zhao, Jing
    Zhang, Rui
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4717 - 4732