We consider a partial data Calderon problem for elliptic boundary value problems with unbounded coefficients. In particular, we will show that partial measurement of the Neumann-Dirichlet data for the operator triangle + q can uniquely determine q is an element of L-n/2(ohm). This requires that we construct an explicit Green's function for the conjugated Laplacian with specified Neumann boundary conditions. The explicit construction of the Green's function allows us to deduce L-p type estimates which would otherwise be out of reach using the previous methods for constructing such Green's functions for bounded potentials.
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Krupchyk, Katya
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USA
Univ Helsinki, Dept Math & Stat, Helsinki, Finland
Hong Kong Univ Sci & Technol, Inst Adv Study, Clear Water Bay, Hong Kong, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USAUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA
Krupchyk, Katya
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USA
Univ Helsinki, Dept Math & Stat, Helsinki, Finland
Hong Kong Univ Sci & Technol, Inst Adv Study, Clear Water Bay, Hong Kong, Peoples R ChinaUniv Calif Irvine, Dept Math, Irvine, CA 92697 USA