AN INVERSE PROBLEM WITH PARTIAL NEUMANN DATA AND Ln/2 POTENTIALS

被引:0
作者
Busch, Leonard [1 ]
Tzou, Leo [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
基金
澳大利亚研究理事会;
关键词
Schrodinger equation; calder & ouml; n problem; inverse problems; pseudo- differential operators; partial data; Green's function; CALDERON PROBLEM; CAUCHY DATA;
D O I
10.3934/ipi.2024030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a partial data Calderon problem for elliptic boundary value problems with unbounded coefficients. In particular, we will show that partial measurement of the Neumann-Dirichlet data for the operator triangle + q can uniquely determine q is an element of L-n/2(ohm). This requires that we construct an explicit Green's function for the conjugated Laplacian with specified Neumann boundary conditions. The explicit construction of the Green's function allows us to deduce L-p type estimates which would otherwise be out of reach using the previous methods for constructing such Green's functions for bounded potentials.
引用
收藏
页码:174 / 218
页数:45
相关论文
共 23 条
  • [1] Adler A., 2021, Electrical Impedance Tomography: Methods, History and Applications
  • [2] Recovering a potential from Cauchy data in the two-dimensional case
    Bukhgeim, A. L.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01): : 19 - 33
  • [3] Recovering a potential from partial Cauchy data
    Bukhgeim, AL
    Uhlmann, G
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) : 653 - 668
  • [4] Calderon A. P., 1980, SEMINAR NUMERICAL AN, P65
  • [5] Chung F. J., 2020, T AM MATH SOC SER B, V7, P97, DOI [10.1090/btran/39, DOI 10.1090/BTRAN/39]
  • [6] Partial Data for the Neumann-to-Dirichlet Map
    Chung, Francis J.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (03) : 628 - 665
  • [7] Determining an Unbounded Potential from Cauchy Data in Admissible Geometries
    Ferreira, David Dos Santos
    Kenig, Carlos E.
    Salo, Mikko
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (01) : 50 - 68
  • [8] Gilbarg D., 1977, GRUND MATH WISS, P224
  • [9] CALDERON INVERSE PROBLEM WITH PARTIAL DATA ON RIEMANN SURFACES
    Guillarmou, Colin
    Tzou, Leo
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 158 (01) : 83 - 120
  • [10] Hormander L, 2003, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis