Challenges in space-based gravitational wave data analysis and applications of artificial intelligence

被引:3
作者
Wang, He [1 ,2 ]
Du, MingHui [3 ]
Xu, Peng [2 ,3 ,4 ,5 ]
Zhou, Yu-Feng [6 ]
机构
[1] Univ Chinese Acad Sci, Int Ctr Theoret Phys Asia Pacific, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci UCAS, Taiji Lab Gravitat Wave Universe Beijing Hangzhou, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Mech, Natl Micrograv Lab, Ctr Gravitat Wave Expt, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci UCAS, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[5] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Lanzhou 730000, Peoples R China
[6] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
关键词
gravitational-wave detection; data analysis; parameter estimation; artificial intelligence; BLACK-HOLE; BINARIES; SAMPLER; TIME; POPULATION; SIGNALS;
D O I
10.1360/SSPMA-2024-0087
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As space-based gravitational wave detection projects such as LISA, Taiji, and Tianqin continue to advance, we are on the cusp of gaining a new viewpoint on observing the universe. However, the scientific data processing for these projects faces unprecedented challenges, including the superposition of numerous gravitational wave sources, non-stationary noises, and data anomalies. This review aims to make a brief summary of these challenges and their possible solutions, using the Bayesian statistical inference framework as a thread, and provide researchers with a relatively comprehensive perspective. Topics such as the construction of waveform templates, the modeling of detector responses, and the processing of noise and data anomaly are discussed, with a focus on the strategies for parameter estimation and global fitting, especially the evaluation of likelihood, and the utilization of various stochastic sampling techniques to improve the efficiency and accuracy of analysis. Notably, this review highlights the applications of artificial intelligence technologies in waveform modeling, noise and data anomaly processing, signal recognition, and parameter estimation, showcasing how artificial intelligence can pave new paths for solving complex problems in the data analysis of space-based gravitational wave detection.
引用
收藏
页数:23
相关论文
共 231 条
  • [1] Advanced LIGO
    Aasi, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V.
    Affeldt, C.
    Aggarwal, N.
    Aguiar, O. D.
    Ain, A.
    Ajith, P.
    Alemic, A.
    Allen, B.
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J. S.
    Ashton, G.
    Ast, S.
    Aston, S. M.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballmer, S. W.
    Barayoga, J. C.
    Barbet, M.
    Barclay, S.
    Barish, B. C.
    Barker, D.
    Barr, B.
    Barsotti, L.
    Bartlett, J.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Batch, J. C.
    Baune, C.
    Behnke, B.
    Bell, A. S.
    Bell, C.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
  • [2] GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adhikari, N.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agarwal, D.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Akcay, S.
    Akutsu, T.
    Albanesi, S.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Anand, C.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Ando, M.
    Andrade, T.
    Andres, N.
    Andric, T.
    Angelova, S., V
    Ansoldi, S.
    Antelis, J. M.
    Antier, S.
    Appert, S.
    Arai, Koji
    Arai, Koya
    Arai, Y.
    Araki, S.
    Araya, A.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Aritomi, N.
    Arnaud, N.
    Arogeti, M.
    Aronson, S. M.
    Arun, K. G.
    [J]. PHYSICAL REVIEW X, 2023, 13 (04)
  • [3] Advanced Virgo: a second-generation interferometric gravitational wave detector
    Acernese, F.
    Agathos, M.
    Agatsuma, K.
    Aisa, D.
    Allemandou, N.
    Allocca, A.
    Amarni, J.
    Astone, P.
    Balestri, G.
    Ballardin, G.
    Barone, F.
    Baronick, J-P
    Barsuglia, M.
    Basti, A.
    Basti, F.
    Bauer, Th S.
    Bavigadda, V.
    Bejger, M.
    Beker, M. G.
    Belczynski, C.
    Bersanetti, D.
    Bertolini, A.
    Bitossi, M.
    Bizouard, M. A.
    Bloemen, S.
    Blom, M.
    Boer, M.
    Bogaert, G.
    Bondi, D.
    Bondu, F.
    Bonelli, L.
    Bonnand, R.
    Boschi, V.
    Bosi, L.
    Bouedo, T.
    Bradaschia, C.
    Branchesi, M.
    Briant, T.
    Brillet, A.
    Brisson, V.
    Bulik, T.
    Bulten, H. J.
    Buskulic, D.
    Buy, C.
    Cagnoli, G.
    Calloni, E.
    Campeggi, C.
    Canuel, B.
    Carbognani, F.
    Cavalier, F.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [4] Detecting a stochastic gravitational wave background in the presence of a galactic foreground and instrument noise
    Adams, Matthew R.
    Cornish, Neil J.
    [J]. PHYSICAL REVIEW D, 2014, 89 (02):
  • [5] Overview of KAGRA: Detector design and construction history
    Akutsu, T.
    Ando, M.
    Arai, K.
    Arai, Y.
    Araki, S.
    Araya, A.
    Aritomi, N.
    Aso, Y.
    Bae, S.
    Bae, Y.
    Baiotti, L.
    Bajpai, R.
    Barton, M. A.
    Cannon, K.
    Capocasa, E.
    Chan, M.
    Chen, C.
    Chen, K.
    Chen, Y.
    Chu, H.
    Chu, Y-K
    Eguchi, S.
    Enomoto, Y.
    Flaminio, R.
    Fujii, Y.
    Fukunaga, M.
    Fukushima, M.
    Ge, G.
    Hagiwara, A.
    Haino, S.
    Hasegawa, K.
    Hayakawa, H.
    Hayama, K.
    Himemoto, Y.
    Hiranuma, Y.
    Hirata, N.
    Hirose, E.
    Hong, Z.
    Hsieh, B. H.
    Huang, C-Z
    Huang, P.
    Huang, Y.
    Ikenoue, B.
    Imam, S.
    Inayoshi, K.
    Inoue, Y.
    Ioka, K.
    Itoh, Y.
    Izumi, K.
    Jung, K.
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (05):
  • [6] Amaro-Seoane P, 2017, Arxiv, DOI arXiv:1702.00786
  • [7] Low-frequency gravitational-wave science with eLISA/NGO
    Amaro-Seoane, Pau
    Aoudia, Sofiane
    Babak, Stanislav
    Binetruy, Pierre
    Berti, Emanuele
    Bohe, Alejandro
    Caprini, Chiara
    Colpi, Monica
    Cornish, Neil J.
    Danzmann, Karsten
    Dufaux, Jean-Francois
    Gair, Jonathan
    Jennrich, Oliver
    Jetzer, Philippe
    Klein, Antoine
    Lang, Ryan N.
    Lobo, Alberto
    Littenberg, Tyson
    McWilliams, Sean T.
    Nelemans, Gijs
    Petiteau, Antoine
    Porter, Edward K.
    Schutz, Bernard F.
    Sesana, Alberto
    Stebbins, Robin
    Sumner, Tim
    Vallisneri, Michele
    Vitale, Stefano
    Volonteri, Marta
    Ward, Henry
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
  • [8] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [9] Sensor noise in LISA Pathfinder: An extensive in-flight review of the angular and longitudinal interferometric measurement system
    Armano, M.
    Audley, H.
    Baird, J.
    Binetruy, P.
    Born, M.
    Bortoluzzi, D.
    Brandt, N.
    Castelli, E.
    Cavalleri, A.
    Cesarini, A.
    Cruise, A. M.
    Danzmann, K.
    Silva, M. de Deus
    Diepholz, I.
    Dixon, G.
    Dolesi, R.
    Ferraioli, L.
    Ferroni, V.
    Fitzsimons, E. D.
    Flatscher, R.
    Freschi, M.
    Garcia, A.
    Gerndt, R.
    Gesa, L.
    Giardini, D.
    Gibert, F.
    Giusteri, R.
    Grimani, C.
    Grzymisch, J.
    Guzman, F.
    Harrison, I.
    Hartig, M-S
    Hechenblaikner, G.
    Heinzel, G.
    Hewitson, M.
    Hollington, D.
    Hoyland, D.
    Hueller, M.
    Inchauspe, H.
    Jennrich, O.
    Jetzer, P.
    Johann, U.
    Johlander, B.
    Karnesis, N.
    Kaune, B.
    Killow, C. J.
    Korsakova, N.
    Lobo, J. A.
    Lopez-Zaragoza, J. P.
    Maarschalkerweerd, R.
    [J]. PHYSICAL REVIEW D, 2022, 106 (08)
  • [10] Calibrating the system dynamics of LISA Pathfinder
    Armano, M.
    Audley, H.
    Baird, J.
    Binetruy, P.
    Born, M.
    Bortoluzzi, D.
    Castelli, E.
    Cavalleri, A.
    Cesarini, A.
    Cruise, A. M.
    Danzmann, K.
    de Deus Silva, M.
    Diepholz, I
    Dixon, G.
    Dolesi, R.
    Ferraioli, L.
    Ferroni, V
    Fitzsimons, E. D.
    Freschi, M.
    Gesa, L.
    Gibert, F.
    Giardini, D.
    Giusteri, R.
    Grimani, C.
    Grzymisch, J.
    Harrison, I
    Heinzel, G.
    Hewitson, M.
    Hollington, D.
    Hoyland, D.
    Hueller, M.
    Inchauspe, H.
    Jennrich, O.
    Jetzer, P.
    Karnesis, N.
    Kaune, B.
    Korsakova, N.
    Killow, C. J.
    Lobo, J. A.
    Lloro, I
    Liu, L.
    Lopez-Zaragoza, J. P.
    Maarschalkerweerd, R.
    Mance, D.
    Meshksar, N.
    Martin, V
    Martin-Polo, L.
    Martino, J.
    Martin-Porqueras, F.
    Mateos, I
    [J]. PHYSICAL REVIEW D, 2018, 97 (12)