Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis

被引:0
|
作者
Fu, Yifeng [1 ]
Wang, Qiangfeng [1 ]
Tang, Zihan [1 ]
Liu, Gang [1 ]
Guan, Guiping [1 ]
Lyu, Jin [2 ]
机构
[1] Hunan Agr Univ, Coll Biosci & Biotechnol, Hunan Prov Engn Res Ctr Appl Microbial Resources D, Changsha 410128, Peoples R China
[2] First Peoples Hosp Foshan, Dept Pathol, Foshan 528000, Peoples R China
关键词
cordycepin; high-fat diet; fat accumulation; endogenous metabolism; gut microbiota; SERUM; LIVER;
D O I
10.3390/nu16172859
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. Methods: In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice's colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. Results: CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. Conclusions: According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Lacticaseibacillus paracasei K56 Attenuates High-Fat Diet-Induced Obesity by Modulating the Gut Microbiota in Mice
    Miao, Zhonghua
    Zheng, Hanying
    Liu, Wei-Hsien
    Cheng, Ruyue
    Lan, Hui
    Sun, Ting
    Zhao, Wen
    Li, Jinxing
    Shen, Xi
    Li, Hongwei
    Feng, Haotian
    Hung, Wei-Lian
    He, Fang
    PROBIOTICS AND ANTIMICROBIAL PROTEINS, 2023, 15 (04) : 844 - 855
  • [32] Ameliorating effects of Orostachys japonica against high-fat diet-induced obesity and gut dysbiosis
    Chae, Yu-Rim
    Lee, Hye-Bin
    Lee, Yu Ra
    Yoo, Guijae
    Lee, Eunjung
    Park, Miri
    Choi, Sang Yoon
    Park, Ho-Young
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 333
  • [33] Asparagus cochinchinensis alleviates disturbances of lipid metabolism and gut microbiota in high-fat diet-induced obesity mice
    Luo, Shiyue
    Zhou, Lixiao
    Jiang, Xuejun
    Xia, Yinyin
    Huang, Lishuang
    Ling, Run
    Tang, Shixin
    Zou, Zhen
    Chen, Chengzhi
    Qiu, Jingfu
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [34] Gut carbohydrate metabolism instead of fat metabolism regulated by gut microbes mediates high-fat diet-induced obesity
    Li, M.
    Gu, D.
    Xu, N.
    Lei, F.
    Du, L.
    Zhang, Y.
    Xie, W.
    BENEFICIAL MICROBES, 2014, 5 (03) : 335 - 344
  • [35] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [36] Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism
    Chen, Qichao
    Liu, Min
    Zhang, Pengyu
    Fan, Shujun
    Huang, Jinli
    Yu, Shunying
    Zhang, Caihua
    Li, Huajun
    NUTRITION, 2019, 65 : 50 - 59
  • [37] Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice
    Li, Xiaoping
    Yao, Zhao
    Qi, Xinyue
    Cui, Jinling
    Zhou, Yuliang
    Tan, Yihong
    Huang, Xiaojun
    Ye, Hui
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 8
  • [38] Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota
    Zuo, Jihui
    Zhang, Ya
    Wu, Yu
    Liu, Jian
    Wu, Qifang
    Shen, Yizhe
    Jin, Li
    Wu, Mingjiang
    Ma, Zengling
    Tong, Haibin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 216 : 728 - 740
  • [39] Ginsenoside Rb1 ameliorates Glycemic Disorder in Mice With High Fat Diet-Induced Obesity via Regulating Gut Microbiota and Amino Acid Metabolism
    Yang, Xueyuan
    Dong, Bangjian
    An, Lijun
    Zhang, Qi
    Chen, Yao
    Wang, Honglin
    Song, Ziteng
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [40] Secoisolariciresinol diglucoside ameliorates high fat diet-induced colon inflammation and regulates gut microbiota in mice
    Zhang, Li
    Lan, Ying
    Wang, Yan
    Yang, Yiying
    Han, Wenzheng
    Li, Jingyan
    Wang, Yutang
    Liu, Xuebo
    FOOD & FUNCTION, 2022, 13 (05) : 3009 - 3022