Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis

被引:0
|
作者
Fu, Yifeng [1 ]
Wang, Qiangfeng [1 ]
Tang, Zihan [1 ]
Liu, Gang [1 ]
Guan, Guiping [1 ]
Lyu, Jin [2 ]
机构
[1] Hunan Agr Univ, Coll Biosci & Biotechnol, Hunan Prov Engn Res Ctr Appl Microbial Resources D, Changsha 410128, Peoples R China
[2] First Peoples Hosp Foshan, Dept Pathol, Foshan 528000, Peoples R China
关键词
cordycepin; high-fat diet; fat accumulation; endogenous metabolism; gut microbiota; SERUM; LIVER;
D O I
10.3390/nu16172859
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. Methods: In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice's colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. Results: CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. Conclusions: According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats
    Wang, Jing-Hua
    Kim, Bong-Soo
    Han, Kyungsun
    Kim, Hojun
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2017, 14 (06)
  • [32] Ameliorating effects of Orostachys japonica against high-fat diet-induced obesity and gut dysbiosis
    Chae, Yu-Rim
    Lee, Hye-Bin
    Lee, Yu Ra
    Yoo, Guijae
    Lee, Eunjung
    Park, Miri
    Choi, Sang Yoon
    Park, Ho-Young
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 333
  • [33] Cold-Brewed Jasmine Tea Attenuates High-Fat Diet-Induced Obesity and Gut Microbial Dysbiosis
    Li, Ang
    Wang, Jin
    Zhang, Xuejiao
    Kou, Ruixin
    Chen, Mengshan
    Zhang, Bowei
    Liu, Jingmin
    Peng, Bo
    Zhang, Yan
    Wang, Shuo
    NUTRIENTS, 2022, 14 (24)
  • [34] Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism
    Chen, Qichao
    Liu, Min
    Zhang, Pengyu
    Fan, Shujun
    Huang, Jinli
    Yu, Shunying
    Zhang, Caihua
    Li, Huajun
    NUTRITION, 2019, 65 : 50 - 59
  • [35] Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota
    Zuo, Jihui
    Zhang, Ya
    Wu, Yu
    Liu, Jian
    Wu, Qifang
    Shen, Yizhe
    Jin, Li
    Wu, Mingjiang
    Ma, Zengling
    Tong, Haibin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 216 : 728 - 740
  • [36] Ginsenoside Rb1 ameliorates Glycemic Disorder in Mice With High Fat Diet-Induced Obesity via Regulating Gut Microbiota and Amino Acid Metabolism
    Yang, Xueyuan
    Dong, Bangjian
    An, Lijun
    Zhang, Qi
    Chen, Yao
    Wang, Honglin
    Song, Ziteng
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [37] Beneficial Effects of Dietary Polyphenols on High-Fat Diet-Induced Obesity Linking with Modulation of Gut Microbiota
    Liu, Jianhui
    He, Zouyan
    Ma, Ning
    Chen, Zhen-Yu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (01) : 33 - 47
  • [38] Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice
    Li, Xiaoping
    Yao, Zhao
    Qi, Xinyue
    Cui, Jinling
    Zhou, Yuliang
    Tan, Yihong
    Huang, Xiaojun
    Ye, Hui
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 8
  • [39] Gut microbiota dysbiosis and oxidative damage in high-fat diet-induced impairment of spermatogenesis: Role of protocatechuic acid intervention
    Hu, Ruizhi
    Yang, Xizi
    Wang, Long
    Su, Dingding
    He, Ziyu
    Li, Jiaxing
    Gong, Jiatai
    Zhang, Wentao
    Ma, Siqi
    Shi, Mingkun
    Lv, Jing
    Zhang, Qianjin
    Hou, De-Xing
    Zhang, Hongfu
    He, Jianhua
    Yin, Yulong
    Wang, Jun
    Wu, Shusong
    FOOD FRONTIERS, 2024, 5 (06): : 2566 - 2578
  • [40] Fucoidan alleviates dyslipidemia and modulates gut microbiota in high-fat diet-induced mice
    Liu, Min
    Ma, Lin
    Chen, Qichao
    Zhang, Pengyu
    Chen, Chao
    Jia, Lilin
    Li, Huajun
    JOURNAL OF FUNCTIONAL FOODS, 2018, 48 : 220 - 227