Integrated germination related traits and transcriptomic analysis elucidate the potential mechanism of rapeseed under drought stress

被引:1
|
作者
Ai, Xueying [1 ]
El-Badri, Ali Mahmoud [2 ,3 ]
Batool, Maria [2 ]
Lou, Hongxiang [2 ]
Hu, Jie [2 ]
Wang, Zongkai [2 ]
Wang, Chunyun [2 ]
Xiao, Yadan [2 ]
Xiao, Jie [2 ]
Xiong, Yuanyuan [2 ]
Wang, Bo [2 ]
Kuai, Jie [2 ]
Xu, Zhenghua [2 ]
Zhao, Jie [2 ]
Wang, Jing [2 ]
Yu, Haiqiu [1 ]
Zhou, Guangsheng [2 ]
机构
[1] Shenyang Agr Univ, Coll Agron, Shenyang 110161, Peoples R China
[2] Huazhong Agr Univ, MOA Key Lab Crop Ecophysiol & Farming Syst, Middle Reaches Yangtze River, Coll Plant Sci & Technol, Wuhan 430070, Hubei, Peoples R China
[3] Agr Res Ctr ARC, Field Crops Res Inst FCRI, Giza 12619, Egypt
关键词
Drought stress; Rapeseed; Seed water absorption; Transcriptome; Osmoprotection; Seed priming; ARABIDOPSIS SEED-GERMINATION; SALICYLIC-ACID; ABSCISIC-ACID; TOLERANCE; L; PROTEOMICS; PLANTS; ESTABLISHMENT; ACCUMULATION; VITAMIN-B6;
D O I
10.1007/s10725-024-01196-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is a critical factor affecting rapeseed seed germination, leading to poor stability of direct seeding rapeseed cultivation in the Yangtze River Basin region of China. Identifying the key mechanisms and gaining a comprehensive understanding of drought related plant responses can improve the selection of desirable phenotypes of drought tolerance. Therefore, we aimed to identify important compounds that could work as stress responsive biomarkers. Herein, 22 rapeseed varieties were used in pot experiment with different levels of soil moisture contents during the seed germination stage. Among 22 varieties, Qingyou 3 (Q3) and Qinyou 7 (Q7) were selected to assess the decomposition of storage substances, hormone levels, and antioxidant enzyme activity besides transcriptome analysis during the germination stage under drought stress conditions. Our study revealed that drought stress significantly prolonged seed germination time to 60 h with significant differences in drought tolerance among varieties. Additionally, during the germination process, degradation of storage substances (sugar, protein, and lipid) was delayed under drought stress conditions. Sugar content was decreased by 19.80% (Q3) and 15.46% (Q7) during 36-72 h of seed germination; whereas, protein degradation occurred earlier in Q3 resulting in a 17.62% reduction as compared to Q7 at 96 h of seed germination. Moreover, drought treatment increased ABA while reducing GA content in seeds versus normal conditions, which significantly decreased the GA/ABA ratio that was higher in Q3 as compared to Q7. Furthermore, SOD and POD activities were higher, whereas MDA content was lower in roots and leaves of Q3 compared to Q7 under drought stress conditions. Transcriptome analysis revealed that drought tolerance during germination primarily focused on sugar, amino acids, antioxidants and hormones pathways related genes. GO enrichment pathway analysis showed significant differences in ion transport, peroxisomes, and proteasome complexes related genes. Studied varieties exhibited similar enrichment patterns under both conditions, particularly in the pathways associated with antioxidant activity, nutrient library activity, and cysteine peptidase activity. KEGG analysis found that the metabolism of vitamin B6 (B6) and riboflavin (B2) had an important role in drought tolerance and their priming application (400 mu mol/L) improved the stress tolerance during the germination stage in Q7. Besides, their application is considered an efficient method for enhancing the drought tolerance of rapeseed seeds. Conclusively, the current study could provide a theoretical basis of underlying mechanisms of stress tolerance during the germination process under drought stress conditions in rapeseed.
引用
收藏
页码:823 / 841
页数:19
相关论文
共 50 条
  • [41] Association Analysis for Some Biochemical Traits in Wild Relatives of Wheat under Drought Stress Conditions
    Pour-Aboughadareh, Alireza
    Jadidi, Omid
    Shooshtari, Lia
    Poczai, Peter
    Mehrabi, Ali Ashraf
    GENES, 2022, 13 (08)
  • [42] Integrative transcriptomic and TMT-based proteomic analysis reveals the mechanism by which AtENO2 affects seed germination under salt stress
    Wu, Yu
    Liu, Huimin
    Bing, Jie
    Zhang, Genfa
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [43] Regulatory mechanism analysis of signal transduction genes during rapeseed (Brassica napus L.) germination under aluminum stress using WGCNA combination with QTL
    Li, Chenyang
    Wang, Ruili
    Li, Jiana
    Zhou, Qingyuan
    Cui, Cui
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [44] Transcriptomic, cytological, and physiological analyses reveal the potential regulatory mechanism in Tartary buckwheat under cadmium stress
    Ye, Xueling
    Li, Qiang
    Liu, Changying
    Wu, Qi
    Wan, Yan
    Wu, Xiaoyong
    Zhao, Gang
    Zou, Liang
    Xiang, Dabing
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [45] Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis
    Ma, Shanshan
    Sun, Chengzhen
    Su, Wennan
    Zhao, Wenjun
    Zhang, Sai
    Su, Shuyue
    Xie, Boyan
    Kong, Lijing
    Zheng, Jinshuang
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [46] Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis
    Shanshan Ma
    Chengzhen Sun
    Wennan Su
    Wenjun Zhao
    Sai Zhang
    Shuyue Su
    Boyan Xie
    Lijing Kong
    Jinshuang Zheng
    BMC Plant Biology, 24
  • [47] Integrated physiological, transcriptomic and metabolomic analyses reveal the mechanism of peanut kernel weight reduction under waterlogging stress
    Zeng, Ruier
    Chen, Tingting
    Li, Xi
    Cao, Jing
    Li, Jie
    Xu, Xueyu
    Zhang, Lei
    Chen, Yong
    PLANT CELL AND ENVIRONMENT, 2024, 47 (08): : 3198 - 3214
  • [48] Genotypic variation and selection of traits related to forage yield in tall fescue under irrigated and drought stress environments
    Ebrahimiyan, M.
    Majidi, M. M.
    Mirlohi, A.
    GRASS AND FORAGE SCIENCE, 2013, 68 (01) : 59 - 71
  • [49] Evaluation of bread wheat (Triticum aestivumL.) genotypes for yield and related traits under drought stress conditions
    Semahegn, Yared
    Shimelis, Hussein
    Laing, Mark
    Mathew, Isack
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2020, 70 (06): : 474 - 484
  • [50] Physiological and transcriptomic analysis reveals the potential mechanism of Morinda officinalis How in response to freezing stress
    Zhenhua Luo
    Xiaoying Che
    Panpan Han
    Zien Chen
    Zeyu Chen
    Jinfang Chen
    Sishi Xiang
    Ping Ding
    BMC Plant Biology, 23