Satellite Images Analysis and Classification using Deep Learning-based Vision Transformer Model

被引:0
|
作者
Adegun, Adekanmi Adeyinka [1 ]
Viriri, Serestina [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023 | 2023年
关键词
Satellite images; Classification; Deep learning; Vision Transformer; LAND-USE;
D O I
10.1109/CSCI62032.2023.00208
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis and classification of satellite images from diverse sources, including remote sensing and satellite devices, have been explored to understand the dynamics of land use. However, due to their high complexity and multi-resolution, multi-spectra, and multi -scale nature, traditional machine learning classifiers have limitations in their analysis. In this research, an advanced machine learning technique, a deep learning-based vision transformer model, which leverages the benefits of selfattention mechanisms to overcome the challenges of analyzing complex features in satellite images, is proposed for efficient classification. Experimental evaluation on the publicly available EuroSAT satellite imagery dataset demonstrates promising results, achieving an accuracy of 98%.
引用
收藏
页码:1275 / 1279
页数:5
相关论文
共 50 条
  • [31] Deep Learning-Based Plant Classification Using Nonaligned Thermal and Visible Light Images
    Batchuluun, Ganbayar
    Nam, Se Hyun
    Park, Kang Ryoung
    MATHEMATICS, 2022, 10 (21)
  • [32] Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis
    Adegun, Adekanmi Adeyinka
    Viriri, Serestina
    Tapamo, Jules-Raymond
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [33] Review of deep learning methods for remote sensing satellite images classification: experimental survey and comparative analysis
    Adekanmi Adeyinka Adegun
    Serestina Viriri
    Jules-Raymond Tapamo
    Journal of Big Data, 10
  • [34] Deep learning-based bubble detection with swin transformer
    Uesawa, Shinichiro
    Yoshida, Hiroyuki
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2024, 61 (11) : 1438 - 1452
  • [35] Deep Learning-Based Skin Lesion Diagnosis Model Using Dermoscopic Images
    Reshma, G.
    Al-Atroshi, Chiai
    Nassa, Vinay Kumar
    Geetha, B. T.
    Sunitha, Gurram
    Galety, Mohammad Gouse
    Neelakandan, S.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 31 (01) : 621 - 634
  • [36] Deep Learning-Based Model Architecture for Time-Frequency Images Analysis
    Alaskar, Haya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (12) : 486 - 494
  • [37] Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images
    Saralioglu, Ekrem
    Gungor, Oguz
    GEOCARTO INTERNATIONAL, 2022, 37 (18) : 5433 - 5452
  • [38] Deep learning-based detection and classification of lumbar disc herniation on magnetic resonance images
    Zhang, Weicong
    Chen, Ziyang
    Su, Zhihai
    Wang, Zhengyan
    Hai, Jinjin
    Huang, Chengjie
    Wang, Yuhan
    Yan, Bin
    Lu, Hai
    JOR SPINE, 2023, 6 (03):
  • [39] Deep learning-based classification and segmentation for scalpels
    Su, Baiquan
    Zhang, Qingqian
    Gong, Yi
    Xiu, Wei
    Gao, Yang
    Xu, Lixin
    Li, Han
    Wang, Zehao
    Yu, Shi
    Hu, Yida David
    Yao, Wei
    Wang, Junchen
    Li, Changsheng
    Tang, Jie
    Gao, Li
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (05) : 855 - 864
  • [40] Deep learning-based classification and segmentation for scalpels
    Baiquan Su
    Qingqian Zhang
    Yi Gong
    Wei Xiu
    Yang Gao
    Lixin Xu
    Han Li
    Zehao Wang
    Shi Yu
    Yida David Hu
    Wei Yao
    Junchen Wang
    Changsheng Li
    Jie Tang
    Li Gao
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 855 - 864