Satellite Images Analysis and Classification using Deep Learning-based Vision Transformer Model

被引:0
作者
Adegun, Adekanmi Adeyinka [1 ]
Viriri, Serestina [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023 | 2023年
关键词
Satellite images; Classification; Deep learning; Vision Transformer; LAND-USE;
D O I
10.1109/CSCI62032.2023.00208
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Analysis and classification of satellite images from diverse sources, including remote sensing and satellite devices, have been explored to understand the dynamics of land use. However, due to their high complexity and multi-resolution, multi-spectra, and multi -scale nature, traditional machine learning classifiers have limitations in their analysis. In this research, an advanced machine learning technique, a deep learning-based vision transformer model, which leverages the benefits of selfattention mechanisms to overcome the challenges of analyzing complex features in satellite images, is proposed for efficient classification. Experimental evaluation on the publicly available EuroSAT satellite imagery dataset demonstrates promising results, achieving an accuracy of 98%.
引用
收藏
页码:1275 / 1279
页数:5
相关论文
共 27 条
[1]  
Anil A, 2022, INFLUENCE SPECTRAL B
[2]   Integration of Object-Based Image Analysis and Convolutional Neural Network for the Classification of High-Resolution Satellite Image: A Comparative Assessment [J].
Azeez, Omer Saud ;
Shafri, Helmi Z. M. ;
Alias, Aidi Hizami ;
Haron, Nuzul A. B. .
APPLIED SCIENCES-BASEL, 2022, 12 (21)
[3]  
Bakhtiarnia A, 2022, Arxiv, DOI arXiv:2207.13050
[4]   Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques [J].
Basheer, Sana ;
Wang, Xiuquan ;
Farooque, Aitazaz A. ;
Nawaz, Rana Ali ;
Liu, Kai ;
Adekanmbi, Toyin ;
Liu, Suqi .
REMOTE SENSING, 2022, 14 (19)
[5]   Vision Transformers for Remote Sensing Image Classification [J].
Bazi, Yakoub ;
Bashmal, Laila ;
Rahhal, Mohamad M. Al ;
Dayil, Reham Al ;
Ajlan, Naif Al .
REMOTE SENSING, 2021, 13 (03) :1-20
[6]   Training Small Networks for Scene Classification of Remote Sensing Images via Knowledge Distillation [J].
Chen, Guanzhou ;
Zhang, Xiaodong ;
Tan, Xiaoliang ;
Cheng, Yufeng ;
Dai, Fan ;
Zhu, Kun ;
Gong, Yuanfu ;
Wang, Qing .
REMOTE SENSING, 2018, 10 (05)
[7]   Remote Sensing Image Change Detection With Transformers [J].
Chen, Hao ;
Qi, Zipeng ;
Shi, Zhenwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[8]  
Chong E, 2020, EUROSAT LAND USE LAN
[9]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[10]  
Fu W., 2020, Manual of Digital Earth, P55, DOI [DOI 10.1007/978-981-32-9915-3_3, 10.1007/978-981-32-9915-3_3]