Unlocking the photo-Fenton potential of novel magnetically separable sulfur doped g-C3N4/CoFe2O4 Z-scheme heterojunction systems towards tetracycline removal

被引:0
作者
Garg, Twinkle [1 ]
Kaur, Simranjit [1 ]
Singh, Bhupender [2 ]
Singhal, Sonal [1 ]
机构
[1] Panjab Univ, Dept Chem, Chandigarh 160014, India
[2] IIT, Cent Res Facil, Delhi 110017, India
关键词
Sulfur doped g-C3N4 (SCN)@CoFe2O4 (SCNCoFe); Z-scheme heterostructures; photo-Fenton process; magnetically retrievable; wastewater treatment; antibiotics; PHOTOCATALYTIC ACTIVITY; HIGHLY EFFICIENT; DEGRADATION; NANOCOMPOSITES; FERRITE;
D O I
10.1007/s10971-024-06509-3
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The increasing presence of antibiotics in water sources has become a major environmental concern. In this regard, designing of new photocatalysts possessing high visible light response and pertinent redox potentials are prerequisites. Herein, magnetically recoverable sulfur doped g-C3N4 (SCN)@CoFe2O4 (SCNCoFe) Z-scheme heterostructures were successfully fabricated by employing simple calcination route in which CoFe2O4 nanoparticles were allowed to grow over SCN nanosheets. The prepared heterostructures displayed highly efficient photocatalytic removal of tetracyclines i.e., tetracycline (TC) and minocycline (MC), SCNCoFe-20 showed the highest degradation efficiency, with around 94% for both TC and MC within 120 s of visible light irradiation. The mineralization efficacy analysis using total organic carbon removal % validated the practicality of proposed method towards removal of TC and MC from aquatic environment. Photoluminescence and radical quenching studies revealed the enhancement in H2O2 assisted photocatalytic degradation of TC and MC via Z-scheme charge transport, which comprehends the substantial synergy effect between photocatalysis and Fenton mechanism. Overall, this work provides a new insight into development of Z-scheme based heterostructures for antibiotics elimination from wastewater.
引用
收藏
页码:94 / 111
页数:18
相关论文
共 50 条
  • [21] Surface hydroxylation of TiO2/g-C3N4 photocatalyst for photo-Fenton degradation of tetracycline
    Li, Yanhong
    Zhang, Qifeng
    Lu, Yi
    Song, Zhiting
    Wang, Changjiang
    Li, Dongshuo
    Tang, Xiao
    Zhou, Xianju
    CERAMICS INTERNATIONAL, 2022, 48 (01) : 1306 - 1313
  • [22] Fe3O4 quantum dots mediated P-g-C3N4/BiOI as an efficient and recyclable Z-scheme photo-Fenton catalyst for tetracycline degradation and bacterial inactivation
    Li, Xufei
    Shen, Xiaolin
    Qiu, Yanling
    Zhu, Zhiliang
    Zhang, Hua
    Yin, Daqiang
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 456
  • [23] Z-scheme heterojunction of Bi2S3/g-C3N4 and its photocatalytic effect
    Meng, Yachu
    Li, Yuzhen
    Xia, Yunsheng
    Chen, Wenjun
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 29 (02) : 128 - 138
  • [24] g-C3N4 3 N 4 based Z-scheme photocatalysts for tetracycline degradation: A comprehensive review
    Surana, Madhu
    Pattanayak, Dhruti Sundar
    Singh, V. K.
    Pal, Dharm
    JOURNAL OF HAZARDOUS MATERIALS LETTERS, 2024, 5
  • [25] Magnetic binary metal oxide intercalated g-C3N4: Energy band tuned p-n heterojunction towards Z-scheme photo-Fenton phenol reduction and mixed dye degradation
    Palanivel, Baskaran
    Jayaraman, Venkatesan
    Ayyappan, Chinnadurai
    Alagiri, Mani
    JOURNAL OF WATER PROCESS ENGINEERING, 2019, 32
  • [26] Hydrothermal synthesized novel nanoporous g-C3N4/MnTiO3 heterojunction with direct Z-scheme mechanism
    Li, Xibao
    Zhang, Huasen
    Luo, Junming
    Feng, Zhijun
    Huang, Juntong
    ELECTROCHIMICA ACTA, 2017, 258 : 998 - 1007
  • [27] Z-scheme CoWO4/g-C3N4 heterojunction for enhanced ultraviolet-light-driven photocatalytic activity towards the degradation of tetracycline
    Zhu, Xiaoya
    Wang, Ling
    Feng, Chujun
    Liu, Congtian
    Wang, Yanan
    Rong, Jian
    Li, Zhongyu
    Xu, Song
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (31)
  • [28] Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites
    Sahar, Shafaq
    Zeb, Akif
    Liu, Yanan
    Ullah, Naseeb
    Xu, Anwu
    CHINESE JOURNAL OF CATALYSIS, 2017, 38 (12) : 2110 - 2119
  • [29] 2D-2D g-C3N4/WS2 Z-scheme heterojunction: Comparison of the photocatalytic degradation of tetracycline and sulfamethoxazole
    Gnanaguru, Mario Vino Lincy
    Ghangrekar, Makarand M.
    Chowdhury, Shamik
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2024, 456
  • [30] Fabrication of Z-Scheme Heterojunction by Anchoring Mesoporous γ-Fe2O3 Nanospheres on g-C3N4 for Degrading Tetracycline Hydrochloride in Water
    Li, Chunmei
    Yu, Siyu
    Che, Huinan
    Zhang, Xiaoxu
    Han, Juan
    Mao, Yanli
    Wang, Yun
    Liu, Chunbo
    Dong, Hongjun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16437 - 16447