A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization

被引:0
|
作者
Nishioka, Akatsuki [1 ]
Kanno, Yoshihiro [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
关键词
Smoothing method; Accelerated gradient method; Convergence rate; Structural optimization; Eigenvalue optimization;
D O I
10.1016/j.orl.2024.107181
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients at infeasible points, and thus they cannot be applied to some structural optimization problems. We introduce a variant of smoothing accelerated projected gradient methods where every variable is feasible. The O ( k - 1 log k ) convergence rate is obtained using the Lyapunov function. We conduct a numerical experiment on the robust compliance optimization of a truss structure. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
    Bot, Radu Ioan
    Boehm, Axel
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [32] An inexact accelerated stochastic ADMM for separable convex optimization
    Bai, Jianchao
    Hager, William W.
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 81 (02) : 479 - 518
  • [33] An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Sedlmayer, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (03) : 925 - 966
  • [34] An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
    Radu Ioan Boţ
    Ernö Robert Csetnek
    Michael Sedlmayer
    Computational Optimization and Applications, 2023, 86 : 925 - 966
  • [35] A timestamp-based Nesterov's accelerated projected gradient method for distributed Nash equilibrium seeking in monotone games
    Liu, Nian
    Tan, Shaolin
    Tao, Ye
    Lue, Jinhu
    SYSTEMS & CONTROL LETTERS, 2024, 194
  • [36] Hybridization of accelerated gradient descent method
    Milena Petrović
    Vladimir Rakočević
    Nataša Kontrec
    Stefan Panić
    Dejan Ilić
    Numerical Algorithms, 2018, 79 : 769 - 786
  • [37] Hybridization of accelerated gradient descent method
    Petrovic, Milena
    Rakocevic, Vladimir
    Kontrec, Natasa
    Panic, Stefan
    Ilic, Dejan
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 769 - 786
  • [38] An inexact accelerated stochastic ADMM for separable convex optimization
    Jianchao Bai
    William W. Hager
    Hongchao Zhang
    Computational Optimization and Applications, 2022, 81 : 479 - 518
  • [39] Dual fast projected gradient method for quadratic programming
    Roman A. Polyak
    James Costa
    Saba Neyshabouri
    Optimization Letters, 2013, 7 : 631 - 645
  • [40] Dual fast projected gradient method for quadratic programming
    Polyak, Roman A.
    Costa, James
    Neyshabouri, Saba
    OPTIMIZATION LETTERS, 2013, 7 (04) : 631 - 645