A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization

被引:0
|
作者
Nishioka, Akatsuki [1 ]
Kanno, Yoshihiro [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
关键词
Smoothing method; Accelerated gradient method; Convergence rate; Structural optimization; Eigenvalue optimization;
D O I
10.1016/j.orl.2024.107181
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients at infeasible points, and thus they cannot be applied to some structural optimization problems. We introduce a variant of smoothing accelerated projected gradient methods where every variable is feasible. The O ( k - 1 log k ) convergence rate is obtained using the Lyapunov function. We conduct a numerical experiment on the robust compliance optimization of a truss structure. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:5
相关论文
共 50 条