Interconnection of irreversible port Hamiltonian systems☆

被引:3
作者
Ramirez, Hector [1 ]
Le Gorrec, Yann [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Elect, Valparaiso, Chile
[2] Univ Bourgogne Franche Comte, Dept Automat & Syst Micromecatron, FEMTO ST UMR CNRS 6174, 26 Chemin Epitaphe, F-25030 Besancon, France
关键词
Port-Hamiltonian systems; Irreversible thermodynamics; Thermo-mechanical systems; Port-based modeling; State modulated output feedback; PASSIVITY-BASED CONTROL; DYNAMICS;
D O I
10.1016/j.automatica.2024.111846
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper shows how the interconnection of two controlled Irreversible port Hamiltonian Systems has to be state and co-state modulated in order to ensure the closed-loop Irreversible port Hamiltonian structure, satisfying the first and second laws of Thermodynamics. It proposes a precise parametrization of this modulation from the open-loop systems structures in order to guarantee the consistency of the closed loop energy and entropy balance equations. The results are illustrated by means of the examples of a heat-exchanger, a gas-piston system and a chemical reaction. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Trajectory tracking for a class of contractive port Hamiltonian systems [J].
Yaghmaei, Abolfazl ;
Yazdanpanah, Mohammad Javad .
AUTOMATICA, 2017, 83 :331-336
[32]   Exergetic port-Hamiltonian systems: modelling basics [J].
Lohmayer, Markus ;
Kotyczka, Paul ;
Leyendecker, Sigrid .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2021, 27 (01) :489-521
[33]   Optimal control of thermodynamic port-Hamiltonian Systems [J].
Maschke, Bernhard ;
Philipp, Friedrich ;
Schaller, Manuel ;
Worthmann, Karl ;
Faulwasser, Timm .
IFAC PAPERSONLINE, 2022, 55 (30) :55-60
[34]   Available energy-based interconnection and entropy assignment (ABI-EA) boundary control of the heat equation: an Irreversible Port Hamiltonian approach [J].
Mora, Luis A. ;
Le Gorrec, Yann ;
Ramirez, Hector .
2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, :2397-2402
[35]   Stochastic Port-Hamiltonian Systems [J].
Francesco Cordoni ;
Luca Di Persio ;
Riccardo Muradore .
Journal of Nonlinear Science, 2022, 32
[36]   Discrete port-Hamiltonian systems [J].
Talasila, V ;
Clemente-Gallardo, J ;
van der Schaft, AJ .
SYSTEMS & CONTROL LETTERS, 2006, 55 (06) :478-486
[37]   PORT-HAMILTONIAN SYSTEMS ON GRAPHS [J].
van der Schaft, A. J. ;
Maschke, B. M. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (02) :906-937
[38]   Memristive port-Hamiltonian Systems [J].
Jeltsema, Dimitri ;
van der Schaft, Arjan J. .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2010, 16 (02) :75-93
[39]   Distributed Control for Infinite Dimensional Port-Hamiltonian Systems [J].
Macchelli, Alessandro .
IFAC PAPERSONLINE, 2021, 54 (19) :52-57
[40]   Port-Hamiltonian framework in power systems domain: A survey [J].
Tonso, Maris ;
Kaparin, Vadim ;
Belikov, Juri .
ENERGY REPORTS, 2023, 10 :2918-2930